Raising and lowering indices

Last updated

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

Contents

Vectors, covectors and the metric

Mathematical formulation

Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or .

The dual space is the space of linear functionals mapping . Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by , so that is a linear map .

Then under a choice of basis , we can view vectors as an vector with components (vectors are taken by convention to have indices up). This picks out a choice of basis for , defined by the set of relations .

For applications, raising and lowering is done using a structure known as the (pseudo)metric tensor (the 'pseudo-' refers to the fact we allow the metric to be indefinite). Formally, this is a non-degenerate, symmetric bilinear form

In this basis, it has components , and can be viewed as a symmetric matrix in with these components. The inverse metric exists due to non-degeneracy and is denoted , and as a matrix is the inverse to .

Raising and lowering vectors and covectors

Raising and lowering is then done in coordinates. Given a vector with components , we can contract with the metric to obtain a covector:

and this is what we mean by lowering the index. Conversely, contracting a covector with the inverse metric gives a vector:

This process is called raising the index.

Raising and then lowering the same index (or conversely) are inverse operations, which is reflected in the metric and inverse metric tensors being inverse to each other (as is suggested by the terminology):

where is the Kronecker delta or identity matrix.

Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia. Possible metrics on real space are indexed by signature . This is a metric associated to dimensional real space. The metric has signature if there exists a basis (referred to as an orthonormal basis) such that in this basis, the metric takes the form with positive ones and negative ones.

The concrete space with elements which are -vectors and this concrete realization of the metric is denoted , where the 2-tuple is meant to make it clear that the underlying vector space of is : equipping this vector space with the metric is what turns the space into .

Examples:

Well-formulated expressions are constrained by the rules of Einstein summation: any index may appear at most twice and furthermore a raised index must contract with a lowered index. With these rules we can immediately see that an expression such as

is well formulated while

is not.

Example in Minkowski spacetime

The covariant 4-position is given by

with components:

(where x,y,z are the usual Cartesian coordinates) and the Minkowski metric tensor with metric signature (− + + +) is defined as

in components:

To raise the index, multiply by the tensor and contract:

then for λ = 0:

and for λ = j = 1, 2, 3:

So the index-raised contravariant 4-position is:

This operation is equivalent to the matrix multiplication

Given two vectors, and , we can write down their (pseudo-)inner product in two ways:

By lowering indices, we can write this expression as

What is this in matrix notation? The first expression can be written as

while the second is, after lowering the indices of ,

Coordinate free formalism

It is instructive to consider what raising and lowering means in the abstract linear algebra setting.

We first fix definitions: is a finite-dimensional vector space over a field . Typically or .

is a non-degenerate bilinear form, that is, is a map which is linear in both arguments, making it a bilinear form.

By being non-degenerate we mean that for each such that , there is a such that

In concrete applications, is often considered a structure on the vector space, for example an inner product or more generally a metric tensor which is allowed to have indefinite signature, or a symplectic form . Together these cover the cases where is either symmetric or anti-symmetric, but in full generality need not be either of these cases.

There is a partial evaluation map associated to ,

where denotes an argument which is to be evaluated, and denotes an argument whose evaluation is deferred. Then is an element of , which sends .

We made a choice to define this partial evaluation map as being evaluated on the first argument. We could just as well have defined it on the second argument, and non-degeneracy is also independent of argument chosen. Also, when has well defined (anti-)symmetry, evaluating on either argument is equivalent (up to a minus sign for anti-symmetry).

Non-degeneracy shows that the partial evaluation map is injective, or equivalently that the kernel of the map is trivial. In finite dimension, the dual space has equal dimension to , so non-degeneracy is enough to conclude the map is a linear isomorphism. If is a structure on the vector space sometimes call this the canonical isomorphism .

It therefore has an inverse, and this is enough to define an associated bilinear form on the dual:

where the repeated use of is disambiguated by the argument taken. That is, is the inverse map, while is the bilinear form.

Checking these expressions in coordinates makes it evident that this is what raising and lowering indices means abstractly.

Tensors

We will not develop the abstract formalism for tensors straightaway. Formally, an tensor is an object described via its components, and has components up, components down. A generic tensor is written

We can use the metric tensor to raise and lower tensor indices just as we raised and lowered vector indices and raised covector indices.

Examples

Example of raising and lowering

For a (0,2) tensor, [1] twice contracting with the inverse metric tensor and contracting in different indices raises each index:

Similarly, twice contracting with the metric tensor and contracting in different indices lowers each index:

Let's apply this to the theory of electromagnetism.

The contravariant electromagnetic tensor in the (+ − − −) signature is given by [2]

In components,

To obtain the covariant tensor Fαβ, contract with the inverse metric tensor:

and since F00 = 0 and F0i = − Fi0, this reduces to

Now for α = 0, β = k = 1, 2, 3:

and by antisymmetry, for α = k = 1, 2, 3, β = 0:

then finally for α = k = 1, 2, 3, β = l = 1, 2, 3;

The (covariant) lower indexed tensor is then:

This operation is equivalent to the matrix multiplication

General rank

For a tensor of order n, indices are raised by (compatible with above): [1]

and lowered by:

and for a mixed tensor:

We need not raise or lower all indices at once: it is perfectly fine to raise or lower a single index. Lowering an index of an tensor gives a tensor, while raising an index gives a (where have suitable values, for example we cannot lower the index of a tensor.)

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection is also orthonormal, and every orthonormal basis for arises in this fashion.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Post-Newtonian expansion</span> Method of approximation in general relativity

In general relativity, post-Newtonian expansions are used for finding an approximate solution of Einstein field equations for the metric tensor. The approximations are expanded in small parameters that express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields sometimes it is preferable to solve the complete equations numerically. This method is a common mark of effective field theories. In the limit, when the small parameters are equal to 0, the post-Newtonian expansion reduces to Newton's law of gravity.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span> Type of stress-energy tensor

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

References

  1. 1 2 Kay, D. C. (1988). Tensor Calculus. Schaum’s Outlines. New York: McGraw Hill. ISBN   0-07-033484-6.
  2. NB: Some texts, such as: Griffiths, David J. (1987). Introduction to Elementary Particles. Wiley, John & Sons, Inc. ISBN   0-471-60386-4., will show this tensor with an overall factor of −1. This is because they used the negative of the metric tensor used here: (− + + +), see metric signature. In older texts such as Jackson (2nd edition), there are no factors of c since they are using Gaussian units. Here SI units are used.