Metric signature

Last updated

In mathematics, the signature(v, p, r)[ clarification needed ] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, v conventionally represents the number of time or virtual dimensions, and p the number of space or physical dimensions. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. The signature is often denoted by a pair of integers (v, p) implying r=0, or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signatures (1, 3, 0) and (3, 1, 0)[ clarification needed ], respectively. [1]

Contents

The signature is said to be indefinite or mixed if both v and p are nonzero, and degenerate if r is nonzero. A Riemannian metric is a metric with a positive definite signature (v, 0). A Lorentzian metric is a metric with signature (p, 1), or (1, p).

There is another notion of signature of a nondegenerate metric tensor given by a single number s defined as (vp), where v and p are as above, which is equivalent to the above definition when the dimension n = v + p is given or implicit. For example, s = 1− 3 = −2 for (+, −, −, −) and its mirroring s' = −s = +2 for (−, +, +, +).

Definition

The signature of a metric tensor is defined as the signature of the corresponding quadratic form. [2] It is the number (v, p, r) of positive, negative and zero eigenvalues of any matrix (i.e. in any basis for the underlying vector space) representing the form, counted with their algebraic multiplicities. Usually, r = 0 is required, which is the same as saying a metric tensor must be nondegenerate, i.e. no nonzero vector is orthogonal to all vectors.

By Sylvester's law of inertia, the numbers (v, p, r) are basis independent.

Properties

Signature and dimension

By the spectral theorem a symmetric n×n matrix over the reals is always diagonalizable, and has therefore exactly n real eigenvalues (counted with algebraic multiplicity). Thus v + p = n = dim(V).

Sylvester's law of inertia: independence of basis choice and existence of orthonormal basis

According to Sylvester's law of inertia, the signature of the scalar product (a.k.a. real symmetric bilinear form), g does not depend on the choice of basis. Moreover, for every metric g of signature (v, p, r) there exists a basis such that gab = +1 for a = b = 1, ..., v, gab = −1 for a = b = v + 1, ..., v + p and gab = 0 otherwise. It follows that there exists an isometry (V1, g1) → (V2, g2) if and only if the signatures of g1 and g2 are equal. Likewise the signature is equal for two congruent matrices and classifies a matrix up to congruency. Equivalently, the signature is constant on the orbits of the general linear group GL(V) on the space of symmetric rank 2 contravariant tensors S2V and classifies each orbit.

Geometrical interpretation of the indices

The number v (resp. p) is the maximal dimension of a vector subspace on which the scalar product g is positive-definite (resp. negative-definite), and r is the dimension of the radical of the scalar product g or the null subspace of symmetric matrix gab of the scalar product. Thus a nondegenerate scalar product has signature (v, p, 0), with v + p = n. A duality of the special cases (v, p, 0) correspond to two scalar eigenvalues which can be transformed into each other by the mirroring reciprocally.

Examples

Matrices

The signature of the n×n identity matrix is (n, 0, 0). The signature of a diagonal matrix is the number of positive, negative and zero numbers on its main diagonal.

The following matrices have both the same signature (1, 1, 0), therefore they are congruent because of Sylvester's law of inertia:

Scalar products

The standard scalar product defined on has the n-dimensional signatures (v, p, r), where v + p = n and rank r = 0.

In physics, the Minkowski space is a spacetime manifold with v = 1 and p = 3 bases, and has a scalar product defined by either the matrix:

which has signature and known as space-supremacy or space-like; or the mirroring signature , known as virtual-supremacy or time-like with the matrix.

How to compute the signature

There are some methods for computing the signature of a matrix.

Signature in physics

In mathematics, the usual convention for any Riemannian manifold is to use a positive-definite metric tensor (meaning that after diagonalization, elements on the diagonal are all positive).

In theoretical physics, spacetime is modeled by a pseudo-Riemannian manifold. The signature counts how many time-like or space-like characters are in the spacetime, in the sense defined by special relativity: as used in particle physics, the metric has an eigenvalue on the time-like subspace, and its mirroring eigenvalue on the space-like subspace. In the specific case of the Minkowski metric,

the metric signature is or (+, −, −, −) if its eigenvalue is defined in the time direction, or or (−, +, +, +) if the eigenvalue is defined in the three spatial directions x, y and z. (Sometimes the opposite sign convention is used, but with the one given here s directly measures proper time.)

Signature change

If a metric is regular everywhere then the signature of the metric is constant. However if one allows for metrics that are degenerate or discontinuous on some hypersurfaces, then signature of the metric may change at these surfaces. [3] Such signature changing metrics may possibly have applications in cosmology and quantum gravity.

See also

Notes

  1. Rowland, Todd. "Matrix Signature." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/MatrixSignature.html
  2. Landau, L.D.; Lifshitz, E.M. (2002) [1939]. The Classical Theory of Fields. Course of Theoretical Physics. Vol. 2 (4th ed.). Butterworth–Heinemann. pp. 245–246. ISBN   0-7506-2768-9.
  3. Dray, Tevian; Ellis, George; Hellaby, Charles; Manogue, Corinne A. (1997). "Gravity and signature change". General Relativity and Gravitation. 29 (5): 591–597. arXiv: gr-qc/9610063 . Bibcode:1997GReGr..29..591D. doi:10.1023/A:1018895302693. S2CID   7617543.

    Related Research Articles

    In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

    <span class="mw-page-title-main">Riemannian manifold</span> Smooth manifold with an inner product on each tangent space

    In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.

    In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition

    In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

    <span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

    In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

    In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

    In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

    In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

    In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.

    In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

    In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

    In mathematics, specifically linear algebra, a degenerate bilinear formf (x, y ) on a vector space V is a bilinear form such that the map from V to V (the dual space of V ) given by v ↦ (xf (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that

    Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if is a symmetric matrix, then for any invertible matrix , the number of positive, negative and zero eigenvalues of is constant. This result is particularly useful when is diagonal, as the inertia of a diagonal matrix can easily be obtained by looking at the sign of its diagonal elements.

    In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

    In mathematics, a complex structure on a real vector space is an automorphism of that squares to the minus identity, . Such a structure on allows one to define multiplication by complex scalars in a canonical fashion so as to regard as a complex vector space.

    In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

    <span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

    In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

    In differential geometry, the notion of a metric tensor can be extended to an arbitrary vector bundle, and to some principal fiber bundles. This metric is often called a bundle metric, or fibre metric.

    In mathematics and theoretical physics, a pseudo-Euclidean space of signature (k, n-k) is a finite-dimensional real n-space together with a non-degenerate quadratic form q. Such a quadratic form can, given a suitable choice of basis (e1, …, en), be applied to a vector x = x1e1 + ⋯ + xnen, giving which is called the scalar square of the vector x.

    In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.