In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called horizontal subspaces.
Sub-Riemannian manifolds (and so, a fortiori, Riemannian manifolds) carry a natural intrinsic metric called the metric of Carnot–Carathéodory. The Hausdorff dimension of such metric spaces is always an integer and larger than its topological dimension (unless it is actually a Riemannian manifold).
Sub-Riemannian manifolds often occur in the study of constrained systems in classical mechanics, such as the motion of vehicles on a surface, the motion of robot arms, and the orbital dynamics of satellites. Geometric quantities such as the Berry phase may be understood in the language of sub-Riemannian geometry. The Heisenberg group, important to quantum mechanics, carries a natural sub-Riemannian structure.
By a distribution on we mean a subbundle of the tangent bundle of (see also distribution).
Given a distribution a vector field in is called horizontal. A curve on is called horizontal if for any .
A distribution on is called completely non-integrable or bracket generating if for any we have that any tangent vector can be presented as a linear combination of Lie brackets of horizontal fields, i.e. vectors of the form where all vector fields are horizontal. This requirement is also known as Hörmander's condition.
A sub-Riemannian manifold is a triple , where is a differentiable manifold, is a completely non-integrable "horizontal" distribution and is a smooth section of positive-definite quadratic forms on .
Any (connected) sub-Riemannian manifold carries a natural intrinsic metric, called the metric of Carnot–Carathéodory, defined as
where infimum is taken along all horizontal curves such that , . Horizontal curves can be taken either Lipschitz continuous, Absolutely continuous or in the Sobolev space producing the same metric in all cases.
The fact that the distance of two points is always finite (i.e. any two points are connected by an horizontal curve) is a consequence of Hörmander's condition known as Chow–Rashevskii theorem.
A position of a car on the plane is determined by three parameters: two coordinates and for the location and an angle which describes the orientation of the car. Therefore, the position of the car can be described by a point in a manifold
One can ask, what is the minimal distance one should drive to get from one position to another? This defines a Carnot–Carathéodory metric on the manifold
A closely related example of a sub-Riemannian metric can be constructed on a Heisenberg group: Take two elements and in the corresponding Lie algebra such that
spans the entire algebra. The distribution spanned by left shifts of and is completely non-integrable. Then choosing any smooth positive quadratic form on gives a sub-Riemannian metric on the group.
For every sub-Riemannian manifold, there exists a Hamiltonian, called the sub-Riemannian Hamiltonian, constructed out of the metric for the manifold. Conversely, every such quadratic Hamiltonian induces a sub-Riemannian manifold.
Solutions of the corresponding Hamilton–Jacobi equations for the sub-Riemannian Hamiltonian are called geodesics, and generalize Riemannian geodesics.
In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
In differential geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski normF(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive re-parameterizations. If this requirement is dropped, H is called a semi-spray.
When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions.
In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.
In mathematics, a Killing tensor or Killing tensor field is a generalization of a Killing vector, for symmetric tensor fields instead of just vector fields. It is a concept in Riemannian and pseudo-Riemannian geometry, and is mainly used in the theory of general relativity. Killing tensors satisfy an equation similar to Killing's equation for Killing vectors. Like Killing vectors, every Killing tensor corresponds to a quantity which is conserved along geodesics. However, unlike Killing vectors, which are associated with symmetries (isometries) of a manifold, Killing tensors generally lack such a direct geometric interpretation. Killing tensors are named after Wilhelm Killing.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of a Riemannian or pseudo-Riemannian manifold.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.
In mathematics, a harmonic morphism is a (smooth) map between Riemannian manifolds that pulls back real-valued harmonic functions on the codomain to harmonic functions on the domain. Harmonic morphisms form a special class of harmonic maps, namely those that are horizontally (weakly) conformal.
In the mathematical field of differential geometry, a biharmonic map is a map between Riemannian or pseudo-Riemannian manifolds which satisfies a certain fourth-order partial differential equation. A biharmonic submanifold refers to an embedding or immersion into a Riemannian or pseudo-Riemannian manifold which is a biharmonic map when the domain is equipped with its induced metric. The problem of understanding biharmonic maps was posed by James Eells and Luc Lemaire in 1983. The study of harmonic maps, of which the study of biharmonic maps is an outgrowth, had been an active field of study for the previous twenty years. A simple case of biharmonic maps is given by biharmonic functions.