In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, by declaring what constitutes the "smooth parametrizations" into the set.
The concept was first introduced by Jean-Marie Souriau in the 1980s under the name Espace différentiel [1] [2] and later developed by his students Paul Donato [3] and Patrick Iglesias. [4] [5] A related idea was introduced by Kuo-Tsaï Chen (陳國才, Chen Guocai) in the 1970s, using convex sets instead of open sets for the domains of the plots. [6]
Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds (also called smooth manifolds) generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the differential structure from to the manifold.
A diffeological space consists of a set together with a collection of maps (called a diffeology) satisfying suitable axioms, which are used to characterize smoothness of the space in a way similar to charts of an atlas.
A smooth manifold can be equivalently defined as a diffeological space which is locally diffeomorphic to . But there are many diffeological spaces which do not carry any local model, nor a sufficiently interesting underlying topological space. Diffeology is therefore suitable to treat examples of objects more general than manifolds.
A diffeology on a set consists of a collection of maps, called plots or parametrizations, from open subsets of (for all ) to such that the following axioms hold:
Note that the domains of different plots can be subsets of for different values of ; in particular, any diffeology contains the elements of its underlying set as the plots with . A set together with a diffeology is called a diffeological space.
More abstractly, a diffeological space is a concrete sheaf on the site of open subsets of , for all , and open covers. [7]
A map between diffeological spaces is called smooth if and only if its composite with any plot of the first space is a plot of the second space. It is called a diffeomorphism if it is smooth, bijective, and its inverse is also smooth. By construction, given a diffeological space , its plots defined on are precisely all the smooth maps from to .
Diffeological spaces form a category where the morphisms are smooth maps. The category of diffeological spaces is closed under many categorical operations: for instance, it is Cartesian closed, complete and cocomplete, and more generally it is a quasitopos. [7]
Any diffeological space is automatically a topological space with the so-called D-topology: [8] the final topology such that all plots are continuous (with respect to the euclidean topology on ).
In other words, a subset is open if and only if is open for any plot on . Actually, the D-topology is completely determined by smooth curves, i.e. a subset is open if and only if is open for any smooth map . [9]
The D-topology is automatically locally path-connected [10] and a differentiable map between diffeological spaces is automatically continuous between their D-topologies. [5]
A Cartan-De Rham calculus can be developed in the framework of diffeologies, as well as a suitable adaptation of the notions of fiber bundles, homotopy, etc. [5] However, there is not a canonical definition of tangent spaces and tangent bundles for diffeological spaces. [11]
Any differentiable manifold can be assigned the diffeology consisting of all smooth maps from all open subsets of Euclidean spaces into it. This diffeology will contain not only the charts of , but also all smooth curves into , all constant maps (with domains open subsets of Euclidean spaces), etc. The D-topology recovers the original manifold topology. With this diffeology, a map between two smooth manifolds is smooth in the usual sense if and only if it is smooth in the diffeological sense. Accordingly, smooth manifolds with smooth maps form a full subcategory of the category of diffeological spaces.
This procedure similarly assigns diffeologies to other spaces that possess a smooth structure that is determined by a local model. More precisely, each of the examples below form a full subcategory of diffeological spaces.
The wire diffeology (or spaghetti diffeology) on is the diffeology whose plots factor locally through . More precisely, a map is a plot if and only if for every there is an open neighbourhood of such that for two plots and . This diffeology does not coincide with the standard diffeology on : for instance, the identity is not a plot in the wire diffeology. [5]
This example can be enlarged to diffeologies whose plots factor locally through . More generally, one can consider the rank--restricted diffeology on a smooth manifold : a map is a plot if and only if the rank of its differential is less or equal than . For one recovers the wire diffeology. [17]
Analogously to the notions of submersions and immersions between manifolds, there are two special classes of morphisms between diffeological spaces. A subduction is a surjective function between diffeological spaces such that the diffeology of is the pushforward of the diffeology of . Similarly, an induction is an injective function between diffeological spaces such that the diffeology of is the pullback of the diffeology of . Note that subductions and inductions are automatically smooth.
It is instructive to consider the case where and are smooth manifolds.
In the category of diffeological spaces, subductions are precisely the strong epimorphisms, and inductions are precisely the strong monomorphisms. A map that is both a subduction and induction is a diffeomorphism. [17]
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
In mathematics and more specifically in topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.
In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.
In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a Euclidean space.
In mathematics, and specifically in topology, a CW complex is a topological space that is built by gluing together topological balls of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation.
In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion.
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.
In mathematics, triangulation describes the replacement of topological spaces with simplicial complexes by the choice of an appropriate homeomorphism. A space that admits such a homeomorphism is called a triangulable space. Triangulations can also be used to define a piecewise linear structure for a space, if one exists. Triangulation has various applications both in and outside of mathematics, for instance in algebraic topology, in complex analysis, and in modeling.
In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.
In topology, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.
In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.
Definition 1.2.3