Slope

Last updated
Slope:
m
=
D
y
D
x
=
tan
[?]
(
th
)
{\displaystyle m={\frac {\Delta y}{\Delta x}}=\tan(\theta )} Wiki slope in 2d.svg
Slope:

In mathematics, the slope or gradient of a line is a number that describes the direction of the line on a plane. [1] Often denoted by the letter m, slope is calculated as the ratio of the vertical change to the horizontal change ("rise over run") between two distinct points on the line, giving the same number for any choice of points.

Contents

The line may be physical – as set by a road surveyor, pictorial as in a diagram of a road or roof, or abstract. An application of the mathematical concept is found in the grade or gradient in geography and civil engineering.

The steepness, incline, or grade of a line is the absolute value of its slope: greater absolute value indicates a steeper line. The line trend is defined as follows:

Special directions are:

If two points of a road have altitudes y1 and y2, the rise is the difference (y2y1) = Δy. Neglecting the Earth's curvature, if the two points have horizontal distance x1 and x2 from a fixed point, the run is (x2x1) = Δx. The slope between the two points is the difference ratio:

Through trigonometry, the slope m of a line is related to its angle of inclination θ by the tangent function

Thus, a 45° rising line has slope m = +1, and a 45° falling line has slope m = −1.

Generalizing this, differential calculus defines the slope of a plane curve at a point as the slope of its tangent line at that point. When the curve is approximated by a series of points, the slope of the curve may be approximated by the slope of the secant line between two nearby points. When the curve is given as the graph of an algebraic expression, calculus gives formulas for the slope at each point. Slope is thus one of the central ideas of calculus and its applications to design.

Notation

There seems to be no clear answer as to why the letter m is used for slope, but it first appears in English in O'Brien (1844) [2] who introduced the equation of a line as "y = mx + b", and it can also be found in Todhunter (1888) [3] who wrote "y = mx + c". [4]

Definition

Slope illustrated for y = (3/2)x - 1. Click on to enlarge Slope of lines illustrated.jpg
Slope illustrated for y = (3/2)x − 1. Click on to enlarge
Slope of a line in coordinates system, from f(x) = -12x + 2 to f(x) = 12x + 2 Gradient of a line in coordinates from -12x+2 to +12x+2.gif
Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2

The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line. This is described by the following equation:

(The Greek letter delta , Δ, is commonly used in mathematics to mean "difference" or "change".)

Given two points and , the change in from one to the other is (run), while the change in is (rise). Substituting both quantities into the above equation generates the formula:

The formula fails for a vertical line, parallel to the axis (see Division by zero), where the slope can be taken as infinite, so the slope of a vertical line is considered undefined.

Examples

Suppose a line runs through two points: P = (1, 2) and Q = (13, 8). By dividing the difference in -coordinates by the difference in -coordinates, one can obtain the slope of the line:

Since the slope is positive, the direction of the line is increasing. Since |m| < 1, the incline is not very steep (incline <45°).

As another example, consider a line which runs through the points (4, 15) and (3, 21). Then, the slope of the line is

Since the slope is negative, the direction of the line is decreasing. Since |m| > 1, this decline is fairly steep (decline >45°).

Algebra and geometry

Slopes of parallel and perpendicular lines Slopes of Parallel and Perpendicular Lines.svg
Slopes of parallel and perpendicular lines

Examples

For example, consider a line running through points (2,8) and (3,20). This line has a slope, m, of

One can then write the line's equation, in point-slope form:

or:

The angle θ between −90° and 9000° that this line makes with the x-axis is

Consider the two lines: y = −3x + 1 and y = −3x − 2. Both lines have slope m = −3. They are not the same line. So they are parallel lines.

Consider the two lines y = −3x + 1 and y = x/3 − 2. The slope of the first line is m1 = −3. The slope of the second line is m2 = 1/3. The product of these two slopes is −1. So these two lines are perpendicular.

Statistics

In statistics, the gradient of the least-squares regression best-fitting line for a given sample of data may be written as:

,

This quantity m is called as the regression slope for the line . The quantity is Pearson's correlation coefficient, is the standard deviation of the y-values and is the standard deviation of the x-values. This may also be written as a ratio of covariances: [6]

Calculus

At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash-dot, negative where red and dashed, and zero where black and solid. Tangent function animation.gif
At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.

The concept of a slope is central to differential calculus. For non-linear functions, the rate of change varies along the curve. The derivative of the function at a point is the slope of the line tangent to the curve at the point and is thus equal to the rate of change of the function at that point.

If we let Δx and Δy be the distances (along the x and y axes, respectively) between two points on a curve, then the slope given by the above definition,

,

is the slope of a secant line to the curve. For a line, the secant between any two points is the line itself, but this is not the case for any other type of curve.

For example, the slope of the secant intersecting y = x2 at (0,0) and (3,9) is 3. (The slope of the tangent at x = 32 is also 3  a consequence of the mean value theorem.)

By moving the two points closer together so that Δy and Δx decrease, the secant line more closely approximates a tangent line to the curve, and as such the slope of the secant approaches that of the tangent. Using differential calculus, we can determine the limit, or the value that Δyx approaches as Δy and Δx get closer to zero; it follows that this limit is the exact slope of the tangent. If y is dependent on x, then it is sufficient to take the limit where only Δx approaches zero. Therefore, the slope of the tangent is the limit of Δyx as Δx approaches zero, or dy/dx. We call this limit the derivative.

The value of the derivative at a specific point on the function provides us with the slope of the tangent at that precise location. For example, let y = x2. A point on this function is (−2,4). The derivative of this function is dydx = 2x. So the slope of the line tangent to y at (−2,4) is 2 ⋅ (−2) = −4. The equation of this tangent line is: y − 4 = (−4)(x − (−2)) or y = −4x − 4.

Difference of slopes

The illusion of a paradox of area is dispelled by comparing slopes where blue and red triangles meet. Missing square puzzle.svg
The illusion of a paradox of area is dispelled by comparing slopes where blue and red triangles meet.

An extension of the idea of angle follows from the difference of slopes. Consider the shear mapping

Then is mapped to . The slope of is zero and the slope of is . The shear mapping added a slope of . For two points on with slopes and , the image

has slope increased by , but the difference of slopes is the same before and after the shear. This invariance of slope differences makes slope an angular invariant measure, on a par with circular angle (invariant under rotation) and hyperbolic angle, with invariance group of squeeze mappings. [7] [8]

Slope (pitch) of a roof

The slope of a roof, traditionally and commonly called the roof pitch, in carpentry and architecture in the US is commonly described in terms of integer fractions of one foot (geometric tangent, rise over run), a legacy of British imperial measure. Other units are in use in other locales, with similar conventions. For details, see roof pitch.

Slope of a road or railway

There are two common ways to describe the steepness of a road or railroad. One is by the angle between 0° and 90° (in degrees), and the other is by the slope in a percentage. See also steep grade railway and rack railway.

The formulae for converting a slope given as a percentage into an angle in degrees and vice versa are:

(this is the inverse function of tangent; see trigonometry)

and

where angle is in degrees and the trigonometric functions operate in degrees. For example, a slope of 100% or 1000 is an angle of 45°.

A third way is to give one unit of rise in say 10, 20, 50 or 100 horizontal units, e.g. 1:10. 1:20, 1:50 or 1:100 (or "1 in 10", "1 in 20", etc.) 1:10 is steeper than 1:20. For example, steepness of 20% means 1:5 or an incline with angle 11.3°.

Roads and railways have both longitudinal slopes and cross slopes.

Other uses

The concept of a slope or gradient is also used as a basis for developing other applications in mathematics:

See also

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Grade (slope)</span> Angle to the horizontal plane

The grade (US) or gradient (UK) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent. It is a special case of the slope, where zero indicates horizontality. A larger number indicates higher or steeper degree of "tilt". Often slope is calculated as a ratio of "rise" to "run", or as a fraction in which run is the horizontal distance and rise is the vertical distance.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Great-circle distance</span> Shortest distance between two points on the surface of a sphere

The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

<span class="mw-page-title-main">Exsecant</span> Trigonometric function defined as secant minus one

The external secant function is a trigonometric function defined in terms of the secant function:

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a focus of calculus. In the most basic formulation of arc length for a parametric curve, the arc length is gotten by integrating the speed of the particle over the path. Thus the length of a continuously differentiable curve , for , in the Euclidean plane is given as the integral (because is the magnitude of the velocity vector , i.e., the particle's speed).

In mathematics and computational science, Heun's method may refer to the improved or modified Euler's method, or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

<span class="mw-page-title-main">Tangential angle</span>

In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis.

In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.

In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by where is the derivative of f with respect to , and is an additional real variable. The notation is such that the equation

References

  1. Clapham, C.; Nicholson, J. (2009). "Oxford Concise Dictionary of Mathematics, Gradient" (PDF). Addison-Wesley. p. 348. Archived from the original (PDF) on 29 October 2013. Retrieved 1 September 2013.
  2. O'Brien, M. (1844), A Treatise on Plane Co-Ordinate Geometry or the Application of the Method of Co-Ordinates in the Solution of Problems in Plane Geometry, Cambridge, England: Deightons
  3. Todhunter, I. (1888), Treatise on Plane Co-Ordinate Geometry as Applied to the Straight Line and Conic Sections, London: Macmillan
  4. Weisstein, Eric W. "Slope". MathWorld--A Wolfram Web Resource. Archived from the original on 6 December 2016. Retrieved 30 October 2016.
  5. An early example of this convention can be found in Salmon, George (1850). A Treatise on Conic Sections (2nd ed.). Dublin: Hodges and Smith. pp. 14–15.
  6. Further Mathematics Units 3&4 VCE (Revised). Cambridge Senior Mathematics. 2016. ISBN   9781316616222 via Physical Copy.
  7. Bolt, Michael; Ferdinands, Timothy; Kavlie, Landon (2009). "The most general planar transformations that map parabolas into parabolas". Involve: A Journal of Mathematics. 2 (1): 79–88. doi: 10.2140/involve.2009.2.79 . ISSN   1944-4176. Archived from the original on 2020-06-12. Retrieved 2021-05-22.
  8. Wikibooks-logo-en-noslogan.svg Abstract Algebra/Shear and Slope at Wikibooks