The following is a list of integrals of exponential functions. For a complete list of integral functions, please see the list of integrals.
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
In the following formulas, erf is the error function and Ei is the exponential integral.
where
(Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.)
where
and Γ(x,y) is the upper incomplete gamma function.
The last expression is the logarithmic mean.
(the operator is the Double factorial)
where is the Polylogarithm.
where is the Euler–Mascheroni constant which equals the value of a number of definite integrals.
Finally, a well known result, where is the Kronecker delta.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".
In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals, this typically involves unboundedness, either of the set over which the integral is taken or of the integrand, or both. It may also involve bounded but not closed sets or bounded but not continuous functions. While an improper integral is typically written symbolically just like a standard definite integral, it actually represents a limit of a definite integral or a sum of such limits; thus improper integrals are said to converge or diverge. If a regular definite integral is worked out as if it is improper, the same answer will result.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form
In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.
In mathematics, the Weierstrass transform of a function , named after Karl Weierstrass, is a "smoothed" version of obtained by averaging the values of , weighted with a Gaussian centered at .
In calculus, integration by parametric derivatives, also called parametric integration, is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution.
Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.
In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani. The integrals are of the form
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.
{{cite book}}
: |work=
ignored (help){{cite book}}
: |work=
ignored (help)