In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.
Their respective names stem from their integral definitions, which are defined similarly to the gamma function but with different or "incomplete" integral limits. The gamma function is defined as an integral from zero to infinity. This contrasts with the lower incomplete gamma function, which is defined as an integral from zero to a variable upper limit. Similarly, the upper incomplete gamma function is defined as an integral from a variable lower limit to infinity.
Definition
The upper incomplete gamma function is defined as: whereas the lower incomplete gamma function is defined as: In both cases s is a complex parameter, such that the real part of s is positive.
The lower incomplete gamma and the upper incomplete gamma function, as defined above for real positive s and x, can be developed into holomorphic functions, with respect both to x and s, defined for almost all combinations of complex x and s.[1] Complex analysis shows how properties of the real incomplete gamma functions extend to their holomorphic counterparts.
Lower incomplete gamma function
Holomorphic extension
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all complex s and x. By a theorem of Weierstrass,[3] the limiting function, sometimes denoted as ,[4] is entire with respect to both z (for fixed s) and s (for fixed z),[1] and, thus, holomorphic on C × C by Hartog's theorem.[5] Hence, the following decomposition[1] extends the real lower incomplete gamma function as a holomorphic function, both jointly and separately in z and s. It follows from the properties of and the Γ-function, that the first two factors capture the singularities of (at z = 0 or s a non-positive integer), whereas the last factor contributes to its zeros.
Multi-valuedness
The complex logarithmlog z = log |z| + i arg z is determined up to a multiple of 2πi only, which renders it multi-valued. Functions involving the complex logarithm typically inherit this property. Among these are the complex power, and, since zs appears in its decomposition, the γ-function, too.
The indeterminacy of multi-valued functions introduces complications, since it must be stated how to select a value. Strategies to handle this are:
(the most general way) replace the domain C of multi-valued functions by a suitable manifold in C × C called Riemann surface. While this removes multi-valuedness, one has to know the theory behind it;[6]
restrict the domain such that a multi-valued function decomposes into separate single-valued branches, which can be handled individually.
The following set of rules can be used to interpret formulas in this section correctly. If not mentioned otherwise, the following is assumed:
Sectors
Sectors in C having their vertex at z = 0 often prove to be appropriate domains for complex expressions. A sector D consists of all complex z fulfilling z ≠ 0 and α − δ < arg z < α + δ with some α and 0 < δ ≤ π. Often, α can be arbitrarily chosen and is not specified then. If δ is not given, it is assumed to be π, and the sector is in fact the whole plane C, with the exception of a half-line originating at z = 0 and pointing into the direction of −α, usually serving as a branch cut. Note: In many applications and texts, α is silently taken to be 0, which centers the sector around the positive real axis.
Branches
In particular, a single-valued and holomorphic logarithm exists on any such sector D having its imaginary part bound to the range (α − δ, α + δ). Based on such a restricted logarithm, zs and the incomplete gamma functions in turn collapse to single-valued, holomorphic functions on D (or C×D), called branches of their multi-valued counterparts on D. Adding a multiple of 2π to α yields a different set of correlated branches on the same set D. However, in any given context here, α is assumed fixed and all branches involved are associated to it. If |α| < δ, the branches are called principal, because they equal their real analogues on the positive real axis. Note: In many applications and texts, formulas hold only for principal branches.
Relation between branches
The values of different branches of both the complex power function and the lower incomplete gamma function can be derived from each other by multiplication of ,[1] for k a suitable integer.
Behavior near branch point
The decomposition above further shows, that γ behaves near z = 0asymptotically like:
For positive real x, y and s, xy/y → 0, when (x, y) → (0, s). This seems to justify setting γ(s, 0) = 0 for real s > 0. However, matters are somewhat different in the complex realm. Only if (a) the real part of s is positive, and (b) values uv are taken from just a finite set of branches, they are guaranteed to converge to zero as (u, v) → (0, s), and so does γ(u, v). On a single branch of γ(b) is naturally fulfilled, so thereγ(s, 0) = 0 for s with positive real part is a continuous limit. Also note that such a continuation is by no means an analytic one.
Algebraic relations
All algebraic relations and differential equations observed by the real γ(s, z) hold for its holomorphic counterpart as well. This is a consequence of the identity theorem, stating that equations between holomorphic functions valid on a real interval, hold everywhere. In particular, the recurrence relation [2] and ∂γ(s, z)/∂z = zs−1e−z[2] are preserved on corresponding branches.
Integral representation
The last relation tells us, that, for fixed s, γ is a primitive or antiderivative of the holomorphic function zs−1e−z. Consequently, for any complex u, v ≠ 0, holds, as long as the path of integration is entirely contained in the domain of a branch of the integrand. If, additionally, the real part of s is positive, then the limit γ(s, u) → 0 for u → 0 applies, finally arriving at the complex integral definition of γ[1]
Any path of integration containing 0 only at its beginning, otherwise restricted to the domain of a branch of the integrand, is valid here, for example, the straight line connecting 0 and z.
Limit for z → +∞
Real values
Given the integral representation of a principal branch of γ, the following equation holds for all positive real s, x:[7]
s complex
This result extends to complex s. Assume first 1 ≤ Re(s) ≤ 2 and 1 < a < b. Then where[8] has been used in the middle. Since the final integral becomes arbitrarily small if only a is large enough, γ(s, x) converges uniformly for x → ∞ on the strip 1 ≤ Re(s) ≤ 2 towards a holomorphic function,[3] which must be Γ(s) because of the identity theorem. Taking the limit in the recurrence relation γ(s, x) = (s − 1) γ(s − 1, x) − xs − 1e−x and noting, that lim xne−x = 0 for x → ∞ and all n, shows, that γ(s, x) converges outside the strip, too, towards a function obeying the recurrence relation of the Γ-function. It follows for all complex s not a non-positive integer, x real and γ principal.
Sectorwise convergence
Now let u be from the sector |arg z| < δ < π/2 with some fixed δ (α = 0), γ be the principal branch on this sector, and look at
As shown above, the first difference can be made arbitrarily small, if |u| is sufficiently large. The second difference allows for following estimation: where we made use of the integral representation of γ and the formula about |zs| above. If we integrate along the arc with radius R = |u| around 0 connecting u and |u|, then the last integral is where M = δ(cos δ)−Re seIm sδ is a constant independent of u or R. Again referring to the behavior of xne−x for large x, we see that the last expression approaches 0 as R increases towards ∞. In total we now have: if s is not a non-negative integer, 0 < ε < π/2 is arbitrarily small, but fixed, and γ denotes the principal branch on this domain.
on each branch meromorphic in s for fixed z ≠ 0, with simple poles at non-positive integers s.
Upper incomplete gamma function
As for the upper incomplete gamma function, a holomorphic extension, with respect to z or s, is given by[1] at points (s, z), where the right hand side exists. Since is multi-valued, the same holds for , but a restriction to principal values only yields the single-valued principal branch of .
When s is a non-positive integer in the above equation, neither part of the difference is defined, and a limiting process, here developed for s → 0, fills in the missing values. Complex analysis guarantees holomorphicity, because proves to be bounded in a neighbourhood of that limit for a fixed z.
To determine the limit, the power series of at z = 0 is useful. When replacing by its power series in the integral definition of , one obtains (assume x,s positive reals for now): or[4] which, as a series representation of the entire function, converges for all complex x (and all complex s not a non-positive integer).
With its restriction to real values lifted, the series allows the expansion:
By way of the recurrence relation, values of for positive integers n can be derived from this result,[11] so the upper incomplete gamma function proves to exist and be holomorphic, with respect both to z and s, for all s and z ≠ 0.
multi-valued holomorphic in z for fixed s non zero and not a positive integer, with a branch point at z = 0;
equal to for s with positive real part and z = 0 (the limit when ), but this is a continuous extension, not an analytic one (does not hold for real s < 0!);
Even if unavailable directly, however, incomplete function values can be calculated using functions commonly included in spreadsheets (and computer algebra packages). In Excel, for example, these can be calculated using the gamma function combined with the gamma distribution function.
The lower incomplete function: = EXP(GAMMALN(s))*GAMMA.DIST(x,s,1,TRUE).
The upper incomplete function: = EXP(GAMMALN(s))*(1-GAMMA.DIST(x,s,1,TRUE)).
In Python, the Scipy library provides implementations of incomplete gamma functions under scipy.special, however, it does not support negative values for the first argument. The function gammainc from the mpmath library supports all complex arguments.
Regularized gamma functions and Poisson random variables
When is an integer, is the cumulative distribution function for Poisson random variables: If is a random variable then
This formula can be derived by repeated integration by parts.
In the context of the stable count distribution, the parameter can be regarded as inverse of Lévy's stability parameter : where is a standard stable count distribution of shape .
and are implemented as gammainc[17] and gammaincc[18] in scipy.
Derivatives
Using the integral representation above, the derivative of the upper incomplete gamma function with respect to x is The derivative with respect to its first argument is given by[19] and the second derivative by where the function is a special case of the Meijer G-function This particular special case has internal closure properties of its own because it can be used to express all successive derivatives. In general, where is the permutation defined by the Pochhammer symbol: All such derivatives can be generated in succession from: and This function can be computed from its series representation valid for , with the understanding that s is not a negative integer or zero. In such a case, one must use a limit. Results for can be obtained by analytic continuation. Some special cases of this function can be simplified. For example, , , where is the Exponential integral. These derivatives and the function provide exact solutions to a number of integrals by repeated differentiation of the integral definition of the upper incomplete gamma function.[20][21] For example, This formula can be further inflated or generalized to a huge class of Laplace transforms and Mellin transforms. When combined with a computer algebra system, the exploitation of special functions provides a powerful method for solving definite integrals, in particular those encountered by practical engineering applications (see Symbolic integration for more details).
1 2 Donald E. Marshall (Autumn 2009). "Complex Analysis"(PDF). Math 534 (student handout). University of Washington. Theorem 3.9 on p.56. Archived from the original(PDF) on 16 May 2011. Retrieved 23 April 2011.
↑ K.O. Geddes, M.L. Glasser, R.A. Moore and T.C. Scott, Evaluation of Classes of Definite Integrals Involving Elementary Functions via Differentiation of Special Functions, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 1, (1990), pp.149–165,
↑ Mathar (2009). "Numerical Evaluation of the Oscillatory Integral over exp(i*pi*x)*x^(1/x) between 1 and infinity". arXiv:0912.3844 [math.CA]., App B
Related Research Articles
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
In mathematics, Catalan's constantG, is the alternating sum of the reciprocals of the odd square numbers, being defined by:
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers defined as the (m + 1)th derivative of the logarithm of the gamma function:
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space.
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
In mathematics, the exponential integral Ei is a special function on the complex plane.
In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:
In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators.
In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.
In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
The Bernoulli polynomials of the second kindψn(x), also known as the Fontana–Bessel polynomials, are the polynomials defined by the following generating function:
G. Arfken and H. Weber. Mathematical Methods for Physicists. Harcourt/Academic Press, 2000. (See Chapter 10.)
DiDonato, Armido R.; Morris, Jr., Alfred H. (December 1986). "Computation of the incomplete gamma function ratios and their inverse". ACM Transactions on Mathematical Software. 12 (4): 377–393. doi:10.1145/22721.23109. S2CID14351930.
van Deun, Joris; Cools, Ronald (2006). "A stable recurrence for the incomplete gamma function with imaginary second argument". Numer. Math. 104 (4): 445–456. doi:10.1007/s00211-006-0026-1. MR2249673. S2CID43780150.
Winitzki, Serge (2003). "Computing the Incomplete Gamma Function to Arbitrary Precision". In Vipin Kumar; Marina L. Gavrilova; Chih Jeng Kenneth Tan; Pierre L'Ecuyer (eds.). Computational Science and Its Applications — ICSSA 2003. International Conference on Computational Science and Its Applications, Montreal, Canada, May 18–21, 2003, Proceedings, Part I. Lecture Notes in Computer Science. Vol.2667. pp.790–798. doi:10.1007/3-540-44839-x_83. ISBN978-3-540-40155-1. MR2110953.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.