Exponential integral

Last updated

Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the exponential integral Ei is a special function on the complex plane.

Contents

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions

For real non-zero values of x, the exponential integral Ei(x) is defined as

The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.

For complex values of the argument, the definition becomes ambiguous due to branch points at 0 and . [1] Instead of Ei, the following notation is used, [2]

Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

For positive values of x, we have .

In general, a branch cut is taken on the negative real axis and E1 can be defined by analytic continuation elsewhere on the complex plane.

For positive values of the real part of , this can be written [3]

The behaviour of E1 near the branch cut can be seen by the following relation: [4]

Properties

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

Convergent series

Plot of
E
1
{\displaystyle E_{1}}
function (top) and
Ei
{\displaystyle \operatorname {Ei} }
function (bottom). Exponential integral.svg
Plot of function (top) and function (bottom).

For real or complex arguments off the negative real axis, can be expressed as [5]

where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:

These alternating series can also be used to give good asymptotic bounds for small x, e.g. [ citation needed ]:

for .

Asymptotic (divergent) series

Relative error of the asymptotic approximation for different number
N
{\displaystyle ~N~}
of terms in the truncated sum AsymptoticExpansionE1.png
Relative error of the asymptotic approximation for different number of terms in the truncated sum

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for . [6] However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts: [7]

The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).

Asymptotics beyond all orders

Using integration by parts, we can obtain an explicit formula [8]

For any fixed , the absolute value of the error term decreases, then increases. The minimum occurs at , at which point . This bound is said to be "asymptotics beyond all orders".

Exponential and logarithmic behavior: bracketing

Bracketing of
E
1
{\displaystyle E_{1}}
by elementary functions BracketingE1.png
Bracketing of by elementary functions

From the two series suggested in previous subsections, it follows that behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, can be bracketed by elementary functions as follows: [9]

The left-hand side of this inequality is shown in the graph to the left in blue; the central part is shown in black and the right-hand side is shown in red.

Definition by Ein

Both and can be written more simply using the entire function [10] defined as

(note that this is just the alternating series in the above definition of ). Then we have

Relation with other functions

Kummer's equation

is usually solved by the confluent hypergeometric functions and But when and that is,

we have

for all z. A second solution is then given by E1(−z). In fact,

with the derivative evaluated at Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

for non-zero real values of .

Generalization

The exponential integral may also be generalized to

which can be written as a special case of the upper incomplete gamma function: [11]

The generalized form is sometimes called the Misra function [12] , defined as

Many properties of this generalized form can be found in the NIST Digital Library of Mathematical Functions.

Including a logarithm defines the generalized integro-exponential function [13]

The indefinite integral:

is similar in form to the ordinary generating function for , the number of divisors of :

Derivatives

The derivatives of the generalised functions can be calculated by means of the formula [14]

Note that the function is easy to evaluate (making this recursion useful), since it is just . [15]

Exponential integral of imaginary argument

E
1
(
i
x
)
{\displaystyle E_{1}(ix)}
against
x
{\displaystyle x}
; real part black, imaginary part red. E1ofImaginaryArgument.png
against ; real part black, imaginary part red.

If is imaginary, it has a nonnegative real part, so we can use the formula

to get a relation with the trigonometric integrals and :

The real and imaginary parts of are plotted in the figure to the right with black and red curves.

Approximations

There have been a number of approximations for the exponential integral function. These include:

Applications

See also

Notes

  1. Abramowitz and Stegun, p. 228
  2. Abramowitz and Stegun, p. 228, 5.1.1
  3. Abramowitz and Stegun, p. 228, 5.1.4 with n = 1
  4. Abramowitz and Stegun, p. 228, 5.1.7
  5. Abramowitz and Stegun, p. 229, 5.1.11
  6. Bleistein and Handelsman, p. 2
  7. Bleistein and Handelsman, p. 3
  8. O’Malley, Robert E. (2014), O'Malley, Robert E. (ed.), "Asymptotic Approximations", Historical Developments in Singular Perturbations, Cham: Springer International Publishing, pp. 27–51, doi:10.1007/978-3-319-11924-3_2, ISBN   978-3-319-11924-3 , retrieved 2023-05-04
  9. Abramowitz and Stegun, p. 229, 5.1.20
  10. Abramowitz and Stegun, p. 228, see footnote 3.
  11. Abramowitz and Stegun, p. 230, 5.1.45
  12. After Misra (1940), p. 178
  13. Milgram (1985)
  14. Abramowitz and Stegun, p. 230, 5.1.26
  15. Abramowitz and Stegun, p. 229, 5.1.24
  16. 1 2 Giao, Pham Huy (2003-05-01). "Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution". Ground Water. 41 (3): 387–390. doi:10.1111/j.1745-6584.2003.tb02608.x. ISSN   1745-6584. PMID   12772832. S2CID   31982931.
  17. 1 2 Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). "Numerical evaluation of exponential integral: Theis well function approximation". Journal of Hydrology. 205 (1–2): 38–51. Bibcode:1998JHyd..205...38T. doi:10.1016/S0022-1694(97)00134-0.
  18. Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). "Approximation for the exponential integral (Theis well function)". Journal of Hydrology. 227 (1–4): 287–291. Bibcode:2000JHyd..227..287B. doi:10.1016/S0022-1694(99)00184-5.
  19. George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Company.

Related Research Articles

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Taylor series</span> Mathematical approximation of a function

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Logarithmic integral function</span> Special function defined by an integral

In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Error function</span> Sigmoid shape special function

In mathematics, the error function, often denoted by erf, is a function defined as:

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Trigonometric integral</span> Special function defined by an integral

In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

<span class="mw-page-title-main">Airy function</span> Special function in the physical sciences

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.

<span class="mw-page-title-main">Reciprocal gamma function</span> Mathematical function

In mathematics, the reciprocal gamma function is the function

In mathematics, the Gompertz constant or Euler–Gompertz constant, denoted by , appears in integral evaluations and as a value of special functions. It is named after Benjamin Gompertz.

<span class="mw-page-title-main">Bickley–Naylor functions</span>

In physics, engineering, and applied mathematics, the Bickley–Naylor functions are a sequence of special functions arising in formulas for thermal radiation intensities in hot enclosures. The solutions are often quite complicated unless the problem is essentially one-dimensional. These functions have practical applications in several engineering problems related to transport of thermal or neutron, radiation in systems with special symmetries. W. G. Bickley was a British mathematician born in 1893.

References