Exponential integral

Last updated

Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the exponential integral Ei is a special function on the complex plane.

Contents

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions

For real non-zero values of x, the exponential integral Ei(x) is defined as

[1]

Properties

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

Convergent series

Plot of
E
1
{\displaystyle E_{1}}
function (top) and
Ei
{\displaystyle \operatorname {Ei} }
function (bottom). Exponential integral.svg
Plot of function (top) and function (bottom).

For real or complex arguments off the negative real axis, can be expressed as [2]

where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:

Asymptotic (divergent) series

Relative error of the asymptotic approximation for different number
N
{\displaystyle ~N~}
of terms in the truncated sum AsymptoticExpansionE1.png
Relative error of the asymptotic approximation for different number of terms in the truncated sum

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for . [3] However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts: [4]

The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).

Asymptotics beyond all orders

Using integration by parts, we can obtain an explicit formula [5] For any fixed , the absolute value of the error term decreases, then increases. The minimum occurs at , at which point . This bound is said to be "asymptotics beyond all orders".

Exponential and logarithmic behavior: bracketing

Bracketing of
E
1
{\displaystyle E_{1}}
by elementary functions BracketingE1.png
Bracketing of by elementary functions

From the two series suggested in previous subsections, it follows that behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, can be bracketed by elementary functions as follows: [6]

The left-hand side of this inequality is shown in the graph to the left in blue; the central part is shown in black and the right-hand side is shown in red.

Definition by Ein

Both and can be written more simply using the entire function [7] defined as

(note that this is just the alternating series in the above definition of ). Then we have

Relation with other functions

Kummer's equation

is usually solved by the confluent hypergeometric functions and But when and that is,

we have

for all z. A second solution is then given by E1(−z). In fact,

with the derivative evaluated at Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

for non-zero real values of .

Generalization

The exponential integral may also be generalized to

which can be written as a special case of the upper incomplete gamma function: [8]

The generalized form is sometimes called the Misra function [9] , defined as

Many properties of this generalized form can be found in the NIST Digital Library of Mathematical Functions.

Including a logarithm defines the generalized integro-exponential function [10]

The indefinite integral:

is similar in form to the ordinary generating function for , the number of divisors of :

Derivatives

The derivatives of the generalised functions can be calculated by means of the formula [11]

Note that the function is easy to evaluate (making this recursion useful), since it is just . [12]

Exponential integral of imaginary argument

E
1
(
i
x
)
{\displaystyle E_{1}(ix)}
against
x
{\displaystyle x}
; real part black, imaginary part red. E1ofImaginaryArgument.png
against ; real part black, imaginary part red.

If is imaginary, it has a nonnegative real part, so we can use the formula

to get a relation with the trigonometric integrals and :

The real and imaginary parts of are plotted in the figure to the right with black and red curves.

Approximations

There have been a number of approximations for the exponential integral function. These include:

Inverse function of the Exponential Integral

We can express the Inverse function of the exponential integral in power series form: [16]

where is the Ramanujan–Soldner constant and is polynomial sequence defined by the following recurrence relation:

For , and we have the formula :

Applications

See also

Notes

  1. Abramowitz and Stegun, p. 228, 5.1.7
  2. Abramowitz and Stegun, p. 229, 5.1.11
  3. Bleistein and Handelsman, p. 2
  4. Bleistein and Handelsman, p. 3
  5. O’Malley, Robert E. (2014), O'Malley, Robert E. (ed.), "Asymptotic Approximations", Historical Developments in Singular Perturbations, Cham: Springer International Publishing, pp. 27–51, doi:10.1007/978-3-319-11924-3_2, ISBN   978-3-319-11924-3 , retrieved 2023-05-04
  6. Abramowitz and Stegun, p. 229, 5.1.20
  7. Abramowitz and Stegun, p. 228, see footnote 3.
  8. Abramowitz and Stegun, p. 230, 5.1.45
  9. After Misra (1940), p. 178
  10. Milgram (1985)
  11. Abramowitz and Stegun, p. 230, 5.1.26
  12. Abramowitz and Stegun, p. 229, 5.1.24
  13. 1 2 Giao, Pham Huy (2003-05-01). "Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution". Ground Water. 41 (3): 387–390. Bibcode:2003GrWat..41..387G. doi:10.1111/j.1745-6584.2003.tb02608.x. ISSN   1745-6584. PMID   12772832. S2CID   31982931.
  14. 1 2 Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). "Numerical evaluation of exponential integral: Theis well function approximation". Journal of Hydrology. 205 (1–2): 38–51. Bibcode:1998JHyd..205...38T. doi:10.1016/S0022-1694(97)00134-0.
  15. Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). "Approximation for the exponential integral (Theis well function)". Journal of Hydrology. 227 (1–4): 287–291. Bibcode:2000JHyd..227..287B. doi:10.1016/S0022-1694(99)00184-5.
  16. "Inverse function of the Exponential Integral Ei-1(x)". Mathematics Stack Exchange. Retrieved 2024-04-24.
  17. George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Company.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Logarithmic integral function</span> Special function defined by an integral

In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Error function</span> Sigmoid shape special function

In mathematics, the error function, often denoted by erf, is a function defined as:

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Trigonometric integral</span> Special function defined by an integral

In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

<span class="mw-page-title-main">Fresnel integral</span> Special function defined by an integral

The Fresnel integralsS(x) and C(x) are two transcendental functions named after Augustin-Jean Fresnel that are used in optics and are closely related to the error function (erf). They arise in the description of near-field Fresnel diffraction phenomena and are defined through the following integral representations:

<span class="mw-page-title-main">Airy function</span> Special function in the physical sciences

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation known as the Airy equation or the Stokes equation.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.

<span class="mw-page-title-main">Confluent hypergeometric function</span> Solution of a confluent hypergeometric equation

In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:

<span class="mw-page-title-main">Reciprocal gamma function</span> Mathematical function

In mathematics, the reciprocal gamma function is the function

<span class="mw-page-title-main">Bickley–Naylor functions</span> Functions for thermal radiation in hot enclosures

In physics, engineering, and applied mathematics, the Bickley–Naylor functions are a sequence of special functions arising in formulas for thermal radiation intensities in hot enclosures. The solutions are often quite complicated unless the problem is essentially one-dimensional. These functions have practical applications in several engineering problems related to transport of thermal or neutron, radiation in systems with special symmetries. W. G. Bickley was a British mathematician born in 1893.

References