In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x1/n). [1]
All elementary functions are continuous on their domains.
Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. [2] [3] [4] An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. [5] Many textbooks and dictionaries do not give a precise definition of the elementary functions, and mathematicians differ on it. [6]
Elementary functions of a single variable x include:
Certain elementary functions of a single complex variable z, such as and , may be multivalued. Additionally, certain classes of functions may be obtained by others using the final two rules. For example, the exponential function composed with addition, subtraction, and division provides the hyperbolic functions, while initial composition with instead provides the trigonometric functions.
Examples of elementary functions include:
The last function is equal to , the inverse cosine, in the entire complex plane.
All monomials, polynomials, rational functions and algebraic functions are elementary.
The absolute value function, for real , is also elementary as it can be expressed as the composition of a power and root of : .[ dubious – discuss ]
Many mathematicians exclude non-analytic functions such as the absolute value function or discontinuous functions such as the step function, [9] [6] but others allow them. Some have proposed extending the set to include, for example, the Lambert W function. [10]
Some examples of functions that are not elementary:
It follows directly from the definition that the set of elementary functions is closed under arithmetic operations, root extraction and composition. The elementary functions are closed under differentiation. They are not closed under limits and infinite sums. Importantly, the elementary functions are not closed under integration, as shown by Liouville's theorem, see nonelementary integral. The Liouvillian functions are defined as the elementary functions and, recursively, the integrals of the Liouvillian functions.
The mathematical definition of an elementary function, or a function in elementary form, is considered in the context of differential algebra. A differential algebra is an algebra with the extra operation of derivation (algebraic version of differentiation). Using the derivation operation new equations can be written and their solutions used in extensions of the algebra. By starting with the field of rational functions, two special types of transcendental extensions (the logarithm and the exponential) can be added to the field building a tower containing elementary functions.
A differential fieldF is a field F0 (rational functions over the rationals Q for example) together with a derivation map u → ∂u. (Here ∂u is a new function. Sometimes the notation u′ is used.) The derivation captures the properties of differentiation, so that for any two elements of the base field, the derivation is linear
and satisfies the Leibniz product rule
An element h is a constant if ∂h = 0. If the base field is over the rationals, care must be taken when extending the field to add the needed transcendental constants.
A function u of a differential extension F[u] of a differential field F is an elementary function over F if the function u
(see also Liouville's theorem)
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.
In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968.
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using only the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.
In mathematics, differential Galois theory is the field that studies extensions of differential fields.
Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative that is, itself, not an elementary function. A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. This theorem also provides a basis for the Risch algorithm for determining which elementary functions have elementary antiderivatives.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .
In mathematics, Liouville's theorem, originally formulated by French mathematician Joseph Liouville in 1833 to 1841, places an important restriction on antiderivatives that can be expressed as elementary functions.
In mathematics, Pfaffian functions are a certain class of functions whose derivative can be written in terms of the original function. They were originally introduced by Askold Khovanskii in the 1970s, but are named after German mathematician Johann Pfaff.
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications.
In mathematics, the Liouvillian functions comprise a set of functions including the elementary functions and their repeated integrals. Liouvillian functions can be recursively defined as integrals of other Liouvillian functions.
Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.