Algebraic function

Last updated

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

Contents

Some algebraic functions, however, cannot be expressed by such finite expressions (this is the Abel–Ruffini theorem). This is the case, for example, for the Bring radical, which is the function implicitly defined by

.

In more precise terms, an algebraic function of degree n in one variable x is a function that is continuous in its domain and satisfies a polynomial equation of positive degree

where the coefficients ai(x) are polynomial functions of x, with integer coefficients. It can be shown that the same class of functions is obtained if algebraic numbers are accepted for the coefficients of the ai(x)'s. If transcendental numbers occur in the coefficients the function is, in general, not algebraic, but it is algebraic over the field generated by these coefficients.

The value of an algebraic function at a rational number, and more generally, at an algebraic number is always an algebraic number. Sometimes, coefficients that are polynomial over a ring R are considered, and one then talks about "functions algebraic over R".

A function which is not algebraic is called a transcendental function, as it is for example the case of . A composition of transcendental functions can give an algebraic function: .

As a polynomial equation of degree n has up to n roots (and exactly n roots over an algebraically closed field, such as the complex numbers), a polynomial equation does not implicitly define a single function, but up to n functions, sometimes also called branches. Consider for example the equation of the unit circle: This determines y, except only up to an overall sign; accordingly, it has two branches:

An algebraic function in m variables is similarly defined as a function which solves a polynomial equation in m+1 variables:

It is normally assumed that p should be an irreducible polynomial. The existence of an algebraic function is then guaranteed by the implicit function theorem.

Formally, an algebraic function in m variables over the field K is an element of the algebraic closure of the field of rational functions K(x1,...,xm).

Algebraic functions in one variable

Introduction and overview

The informal definition of an algebraic function provides a number of clues about their properties. To gain an intuitive understanding, it may be helpful to regard algebraic functions as functions which can be formed by the usual algebraic operations: addition, multiplication, division, and taking an nth root. This is something of an oversimplification; because of the fundamental theorem of Galois theory, algebraic functions need not be expressible by radicals.

First, note that any polynomial function is an algebraic function, since it is simply the solution y to the equation

More generally, any rational function is algebraic, being the solution to

Moreover, the nth root of any polynomial is an algebraic function, solving the equation

Surprisingly, the inverse function of an algebraic function is an algebraic function. For supposing that y is a solution to

for each value of x, then x is also a solution of this equation for each value of y. Indeed, interchanging the roles of x and y and gathering terms,

Writing x as a function of y gives the inverse function, also an algebraic function.

However, not every function has an inverse. For example, y=x2 fails the horizontal line test: it fails to be one-to-one. The inverse is the algebraic "function" . Another way to understand this, is that the set of branches of the polynomial equation defining our algebraic function is the graph of an algebraic curve.

The role of complex numbers

From an algebraic perspective, complex numbers enter quite naturally into the study of algebraic functions. First of all, by the fundamental theorem of algebra, the complex numbers are an algebraically closed field. Hence any polynomial relation p(y,x) = 0 is guaranteed to have at least one solution (and in general a number of solutions not exceeding the degree of p in y) for y at each point x, provided we allow y to assume complex as well as real values. Thus, problems to do with the domain of an algebraic function can safely be minimized.

A graph of three branches of the algebraic function y, where y - xy + 1 = 0, over the domain 3/2 < x < 50. Y^3-xy+1=0.png
A graph of three branches of the algebraic function y, where y  xy + 1 = 0, over the domain 3/2 < x < 50.

Furthermore, even if one is ultimately interested in real algebraic functions, there may be no means to express the function in terms of addition, multiplication, division and taking nth roots without resorting to complex numbers (see casus irreducibilis). For example, consider the algebraic function determined by the equation

Using the cubic formula, we get

For the square root is real and the cubic root is thus well defined, providing the unique real root. On the other hand, for the square root is not real, and one has to choose, for the square root, either non-real square root. Thus the cubic root has to be chosen among three non-real numbers. If the same choices are done in the two terms of the formula, the three choices for the cubic root provide the three branches shown, in the accompanying image.

It may be proven that there is no way to express this function in terms of nth roots using real numbers only, even though the resulting function is real-valued on the domain of the graph shown.

On a more significant theoretical level, using complex numbers allows one to use the powerful techniques of complex analysis to discuss algebraic functions. In particular, the argument principle can be used to show that any algebraic function is in fact an analytic function, at least in the multiple-valued sense.

Formally, let p(x,y) be a complex polynomial in the complex variables x and y. Suppose that x0C is such that the polynomial p(x0,y) of y has n distinct zeros. We shall show that the algebraic function is analytic in a neighborhood of x0. Choose a system of n non-overlapping discs Δi containing each of these zeros. Then by the argument principle

By continuity, this also holds for all x in a neighborhood of x0. In particular, p(x,y) has only one root in Δi, given by the residue theorem:

which is an analytic function.

Monodromy

Note that the foregoing proof of analyticity derived an expression for a system of n different function elementsfi(x), provided that x is not a critical point of p(x,y). A critical point is a point where the number of distinct zeros is smaller than the degree of p, and this occurs only where the highest degree term of p or the discriminant vanish. Hence there are only finitely many such points c1,...,cm.

A close analysis of the properties of the function elements fi near the critical points can be used to show that the monodromy cover is ramified over the critical points (and possibly the point at infinity). Thus the holomorphic extension of the fi has at worst algebraic poles and ordinary algebraic branchings over the critical points.

Note that, away from the critical points, we have

since the fi are by definition the distinct zeros of p. The monodromy group acts by permuting the factors, and thus forms the monodromy representation of the Galois group of p. (The monodromy action on the universal covering space is related but different notion in the theory of Riemann surfaces.)

History

The ideas surrounding algebraic functions go back at least as far as René Descartes. The first discussion of algebraic functions appears to have been in Edward Waring's 1794 An Essay on the Principles of Human Knowledge in which he writes:

let a quantity denoting the ordinate, be an algebraic function of the abscissa x, by the common methods of division and extraction of roots, reduce it into an infinite series ascending or descending according to the dimensions of x, and then find the integral of each of the resulting terms.

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic number</span> Complex number that is a root of a non-zero polynomial in one variable with rational coefficients

An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.

The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form in which a is not zero.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In mathematics, an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Cube root</span> Number whose cube is a given number

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and . The three cube roots of −27i are:

<span class="mw-page-title-main">Quintic function</span> Polynomial function of degree 5

In mathematics, a quintic function is a function of the form

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

In mathematics, a critical point is the argument of a function where the function derivative is zero . The value of the function at a critical point is a critical value.

<span class="mw-page-title-main">Puiseux series</span> Power series with rational exponents

In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series

A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.

In mathematics, a linear recurrence with constant coefficients sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc.

References