Generalized function

Last updated

In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful for treating discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. Important motivations have been the technical requirements of theories of partial differential equations and group representations.

Contents

A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and some contemporary developments are closely related to Mikio Sato's algebraic analysis.

Some early history

In the mathematics of the nineteenth century, aspects of generalized function theory appeared, for example in the definition of the Green's function, in the Laplace transform, and in Riemann's theory of trigonometric series, which were not necessarily the Fourier series of an integrable function. These were disconnected aspects of mathematical analysis at the time.

The intensive use of the Laplace transform in engineering led to the heuristic use of symbolic methods, called operational calculus. Since justifications were given that used divergent series, these methods were questionable from the point of view of pure mathematics. They are typical of later application of generalized function methods. An influential book on operational calculus was Oliver Heaviside's Electromagnetic Theory of 1899.

When the Lebesgue integral was introduced, there was for the first time a notion of generalized function central to mathematics. An integrable function, in Lebesgue's theory, is equivalent to any other which is the same almost everywhere. That means its value at each point is (in a sense) not its most important feature. In functional analysis a clear formulation is given of the essential feature of an integrable function, namely the way it defines a linear functional on other functions. This allows a definition of weak derivative.

During the late 1920s and 1930s further basic steps were taken. The Dirac delta function was boldly defined by Paul Dirac (an aspect of his scientific formalism); this was to treat measures, thought of as densities (such as charge density) like genuine functions. Sergei Sobolev, working in partial differential equation theory, defined the first rigorous theory of generalized functions in order to define weak solutions of partial differential equations (i.e. solutions which are generalized functions, but may not be ordinary functions). [1] Others proposing related theories at the time were Salomon Bochner and Kurt Friedrichs. Sobolev's work was extended by Laurent Schwartz. [2]

Schwartz distributions

The most definitive development was the theory of distributions developed by Laurent Schwartz, systematically working out the principle of duality for topological vector spaces. Its main rival in applied mathematics is mollifier theory, which uses sequences of smooth approximations (the 'James Lighthill' explanation). [3]

This theory was very successful and is still widely used, but suffers from the main drawback that distributions cannot usually be multiplied: unlike most classical function spaces, they do not form an algebra. For example, it is meaningless to square the Dirac delta function. Work of Schwartz from around 1954 showed this to be an intrinsic difficulty.

Algebras of generalized functions

Some solutions to the multiplication problem have been proposed. One is based on a simple definition of by Yu. V. Egorov [4] (see also his article in Demidov's book in the book list below) that allows arbitrary operations on, and between, generalized functions.

Another solution allowing multiplication is suggested by the path integral formulation of quantum mechanics. Since this is required to be equivalent to the Schrödinger theory of quantum mechanics which is invariant under coordinate transformations, this property must be shared by path integrals. This fixes all products of generalized functions as shown by H. Kleinert and A. Chervyakov. [5] The result is equivalent to what can be derived from dimensional regularization. [6]

Several constructions of algebras of generalized functions have been proposed, among others those by Yu. M. Shirokov [7] and those by E. Rosinger, Y. Egorov, and R. Robinson.[ citation needed ] In the first case, the multiplication is determined with some regularization of generalized function. In the second case, the algebra is constructed as multiplication of distributions. Both cases are discussed below.

Non-commutative algebra of generalized functions

The algebra of generalized functions can be built-up with an appropriate procedure of projection of a function to its smooth and its singular parts. The product of generalized functions and appears as

Such a rule applies to both the space of main functions and the space of operators which act on the space of the main functions. The associativity of multiplication is achieved; and the function signum is defined in such a way, that its square is unity everywhere (including the origin of coordinates). Note that the product of singular parts does not appear in the right-hand side of ( 1 ); in particular, . Such a formalism includes the conventional theory of generalized functions (without their product) as a special case. However, the resulting algebra is non-commutative: generalized functions signum and delta anticommute. [7] Few applications of the algebra were suggested. [8] [9]

Multiplication of distributions

The problem of multiplication of distributions, a limitation of the Schwartz distribution theory, becomes serious for non-linear problems.

Various approaches are used today. The simplest one is based on the definition of generalized function given by Yu. V. Egorov. [4] Another approach to construct associative differential algebras is based on J.-F. Colombeau's construction: see Colombeau algebra. These are factor spaces

of "moderate" modulo "negligible" nets of functions, where "moderateness" and "negligibility" refers to growth with respect to the index of the family.

Example: Colombeau algebra

A simple example is obtained by using the polynomial scale on N, . Then for any semi normed algebra (E,P), the factor space will be

In particular, for (E, P)=(C,|.|) one gets (Colombeau's) generalized complex numbers (which can be "infinitely large" and "infinitesimally small" and still allow for rigorous arithmetics, very similar to nonstandard numbers). For (E, P) = (C(R),{pk}) (where pk is the supremum of all derivatives of order less than or equal to k on the ball of radius k) one gets Colombeau's simplified algebra.

Injection of Schwartz distributions

This algebra "contains" all distributions T of D' via the injection

j(T) = (φnT)n + N,

where ∗ is the convolution operation, and

φn(x) = n φ(nx).

This injection is non-canonical in the sense that it depends on the choice of the mollifier φ, which should be C, of integral one and have all its derivatives at 0 vanishing. To obtain a canonical injection, the indexing set can be modified to be N × D(R), with a convenient filter base on D(R) (functions of vanishing moments up to order q).

Sheaf structure

If (E,P) is a (pre-)sheaf of semi normed algebras on some topological space X, then Gs(E, P) will also have this property. This means that the notion of restriction will be defined, which allows to define the support of a generalized function w.r.t. a subsheaf, in particular:

Microlocal analysis

The Fourier transformation being (well-)defined for compactly supported generalized functions (component-wise), one can apply the same construction as for distributions, and define Lars Hörmander's wave front set also for generalized functions.

This has an especially important application in the analysis of propagation of singularities.

Other theories

These include: the convolution quotient theory of Jan Mikusinski, based on the field of fractions of convolution algebras that are integral domains; and the theories of hyperfunctions, based (in their initial conception) on boundary values of analytic functions, and now making use of sheaf theory.

Topological groups

Bruhat introduced a class of test functions, the Schwartz–Bruhat functions, on a class of locally compact groups that goes beyond the manifolds that are the typical function domains. The applications are mostly in number theory, particularly to adelic algebraic groups. André Weil rewrote Tate's thesis in this language, characterizing the zeta distribution on the idele group; and has also applied it to the explicit formula of an L-function.

Generalized section

A further way in which the theory has been extended is as generalized sections of a smooth vector bundle. This is on the Schwartz pattern, constructing objects dual to the test objects, smooth sections of a bundle that have compact support. The most developed theory is that of De Rham currents, dual to differential forms. These are homological in nature, in the way that differential forms give rise to De Rham cohomology. They can be used to formulate a very general Stokes' theorem.

See also

Books

Related Research Articles

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a Colombeau algebra is an algebra of a certain kind containing the space of Schwartz distributions. While in classical distribution theory a general multiplication of distributions is not possible, Colombeau algebras provide a rigorous framework for this.

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory, e.g. in mathematical models that include ultrametric pseudo-differential equations in a non-Archimedean space.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Mollifier</span> Integration kernels for smoothing out sharp features

In mathematics, mollifiers are particular smooth functions, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a (generalized) function, convolving it with a mollifier "mollifies" it, that is, its sharp features are smoothed, while still remaining close to the original.

In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese,, building upon earlier work by Laurent Schwartz, Grothendieck and others.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

<span class="mw-page-title-main">Schwartz space</span> Function space of all functions whose derivatives are rapidly decreasing

In mathematics, Schwartz space is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space of , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function.

In mathematics, a Schwartz–Bruhat function, named after Laurent Schwartz and François Bruhat, is a complex valued function on a locally compact abelian group, such as the adeles, that generalizes a Schwartz function on a real vector space. A tempered distribution is defined as a continuous linear functional on the space of Schwartz–Bruhat functions.

In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz have a two-variable theory that includes all reasonable bilinear forms on the space of test functions. The space itself consists of smooth functions of compact support.

References

  1. Kolmogorov, A. N.; Fomin, S. V. (1999) [1957]. Elements of the theory of functions and functional analysis. Mineola, N.Y.: Dover. ISBN   0-486-40683-0. OCLC   44675353.
  2. Schwartz, L (1952). "Théorie des distributions". Bull. Amer. Math. Soc. 58: 78–85. doi: 10.1090/S0002-9904-1952-09555-0 .
  3. Halperin, I., & Schwartz, L. (1952). Introduction to the Theory of Distributions. Toronto: University of Toronto Press. (Short lecture by Halperin on Schwartz's theory)
  4. 1 2 Yu. V. Egorov (1990). "A contribution to the theory of generalized functions". Russian Math. Surveys. 45 (5): 1–49. Bibcode:1990RuMaS..45....1E. doi:10.1070/rm1990v045n05abeh002683. S2CID   250877163.
  5. H. Kleinert and A. Chervyakov (2001). "Rules for integrals over products of distributions from coordinate independence of path integrals" (PDF). Eur. Phys. J. C. 19 (4): 743–747. arXiv: quant-ph/0002067 . Bibcode:2001EPJC...19..743K. doi:10.1007/s100520100600. S2CID   119091100.
  6. H. Kleinert and A. Chervyakov (2000). "Coordinate Independence of Quantum-Mechanical Path Integrals" (PDF). Phys. Lett. A 269 (1–2): 63. arXiv: quant-ph/0003095 . Bibcode:2000PhLA..273....1K. doi:10.1016/S0375-9601(00)00475-8.
  7. 1 2 Yu. M. Shirokov (1979). "Algebra of one-dimensional generalized functions". Theoretical and Mathematical Physics . 39 (3): 291–301. Bibcode:1979TMP....39..471S. doi:10.1007/BF01017992. S2CID   189852974.
  8. O. G. Goryaga; Yu. M. Shirokov (1981). "Energy levels of an oscillator with singular concentrated potential". Theoretical and Mathematical Physics . 46 (3): 321–324. Bibcode:1981TMP....46..210G. doi:10.1007/BF01032729. S2CID   123477107.
  9. G. K. Tolokonnikov (1982). "Differential rings used in Shirokov algebras". Theoretical and Mathematical Physics . 53 (1): 952–954. Bibcode:1982TMP....53..952T. doi:10.1007/BF01014789. S2CID   123078052.