In mathematics, a Colombeau algebra is an algebra of a certain kind containing the space of Schwartz distributions. While in classical distribution theory a general multiplication of distributions is not possible, Colombeau algebras provide a rigorous framework for this.
Such a multiplication of distributions has long been believed to be impossible because of L. Schwartz' impossibility result, which basically states that there cannot be a differential algebra containing the space of distributions and preserving the product of continuous functions. However, if one only wants to preserve the product of smooth functions instead such a construction becomes possible, as demonstrated first by Colombeau.
As a mathematical tool, Colombeau algebras can be said to combine a treatment of singularities, differentiation and nonlinear operations in one framework, lifting the limitations of distribution theory. These algebras have found numerous applications in the fields of partial differential equations, geophysics, microlocal analysis and general relativity so far [ dubious – discuss ].
Colombeau algebras are named after French mathematician Jean François Colombeau.
Attempting to embed the space of distributions on into an associative algebra , the following requirements seem to be natural:
However, L. Schwartz' result [1] implies that these requirements cannot hold simultaneously. The same is true even if, in 4., one replaces by , the space of times continuously differentiable functions. While this result has often been interpreted as saying that a general multiplication of distributions is not possible, in fact it only states that one cannot unrestrictedly combine differentiation, multiplication of continuous functions and the presence of singular objects like the Dirac delta.
Colombeau algebras are constructed to satisfy conditions 1.–3. and a condition like 4., but with replaced by , i.e., they preserve the product of smooth (infinitely differentiable) functions only.
The Colombeau Algebra [2] is defined as the quotient algebra
Here the algebra of moderate functions on is the algebra of families of smooth regularisations (fε)
of smooth functions on (where R+ = (0,∞) is the "regularization" parameter ε), such that for all compact subsets K of and all multiindices α, there is an N > 0 such that
The ideal of negligible functions is defined in the same way but with the partial derivatives instead bounded by O(ε+N) for allN > 0.
The space(s) of Schwartz distributions can be embedded into the simplified algebra by (component-wise) convolution with any element of the algebra having as representative a δ-net , i.e. a family of smooth functions such that in D' as ε → 0.
This embedding is non-canonical, because it depends on the choice of the δ-net. However, there are versions of Colombeau algebras (so called full algebras) which allow for canonical embeddings of distributions. A well known full version is obtained by adding the mollifiers as second indexing set.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.
In mathematics, the Cauchy principal value, named after Augustin-Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the non singular domain.
In mathematics, the sign function or signum function is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as or .
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.
In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful for treating discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. Important motivations have been the technical requirements of theories of partial differential equations and group representations.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.
In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In mathematical analysis an oscillatory integral is a type of distribution. Oscillatory integrals make rigorous many arguments that, on a naive level, appear to use divergent integrals. It is possible to represent approximate solution operators for many differential equations as oscillatory integrals.
In mathematics, Schwartz space is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space of , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
In mathematics, a Berkovich space, introduced by Berkovich, is a version of an analytic space over a non-Archimedean field, refining Tate's notion of a rigid analytic space.
In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.