In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and paradifferential operators.
The term microlocal implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension greater than one.
In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space. There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to be explicitly characterized, and may be extended to related objects. See Operator (physics) for other examples.
In mathematics, a Fourier transform (FT) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.
In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physicspg 11.
Elias Menachem Stein was an American mathematician who was a leading figure in the field of harmonic analysis. He was the Albert Baldwin Dod Professor of Mathematics, Emeritus, at Princeton University, where he was a faculty member from 1963 until his death in 2018.
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform.
Lars Valter Hörmander was a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". He was awarded the Fields Medal in 1962, the Wolf Prize in 1988, and the Leroy P. Steele Prize in 2006. His Analysis of Linear Partial Differential Operators I–IV is considered a standard work on the subject of linear partial differential operators.
In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory.
In mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF(f) characterizes the singularities of a generalized function f, not only in space, but also with respect to its Fourier transform at each point. The term "wave front" was coined by Lars Hörmander around 1970.
Torsten Carleman, born Tage Gillis Torsten Carleman, was a Swedish mathematician, known for his results in classical analysis and its applications. As the director of the Mittag-Leffler Institute for more than two decades, Carleman was the most influential mathematician in Sweden.
In mathematical analysis, Fourier integral operators have become an important tool in the theory of partial differential equations. The class of Fourier integral operators contains differential operators as well as classical integral operators as special cases.
In mathematics, the FBI transform or Fourier–Bros–Iagolnitzer transform is a generalization of the Fourier transform developed by the French mathematical physicists Jacques Bros and Daniel Iagolnitzer in order to characterise the local analyticity of functions on Rn. The transform provides an alternative approach to analytic wave front sets of distributions, developed independently by the Japanese mathematicians Mikio Sato, Masaki Kashiwara and Takahiro Kawai in their approach to microlocal analysis. It can also be used to prove the analyticity of solutions of analytic elliptic partial differential equations as well as a version of the classical uniqueness theorem, strengthening the Cauchy–Kowalevski theorem, due to the Swedish mathematician Erik Albert Holmgren (1872–1943).
The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is a vector space equipped with an inner product, an operation that allows defining lengths and angles. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used.
Charles L. Epstein is a Thomas A. Scott Professor of Mathematics at the University of Pennsylvania, Philadelphia.
Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.
Sigurdur Helgason is an Icelandic mathematician whose research has been devoted to the geometry and analysis on symmetric spaces. In particular he has used new integral geometric methods to establish fundamental existence theorems for differential equations on symmetric spaces as well as some new results on the representations of their isometry groups. He also introduced a Fourier transform on these spaces and proved the principal theorems for this transform, the inversion formula, the Plancherel theorem and the analog of the Paley–Wiener theorem.
In mathematics, Weinstein's symplectic category is (roughly) a category whose objects are symplectic manifolds and whose morphisms are canonical relations, inclusions of Lagrangian submanifolds L into , where the superscript minus means minus the given symplectic form. The notion was introduced by Alan Weinstein, according to whom "Quantization problems suggest that the category of symplectic manifolds and symplectomorphisms be augmented by the inclusion of canonical relations as morphisms." The composition of canonical relations is given by a fiber product.
Richard Burt Melrose is an Australian mathematician, who works on geometric analysis, partial differential equations, and differential geometry.
Frédéric Pham is a Vietnamese-French mathematician and mathematical physicist. He is known for the Brieskorn-Pham manifolds.
András Vasy is an American, Hungarian mathematician working in the areas of partial differential equations, microlocal analysis, scattering theory, and inverse problems. He is currently a professor of mathematics at Stanford University.
Johannes Sjöstrand is a Swedish mathematician, specializing in partial differential equations and functional analysis.