Algebraic structure → Ring theory Ring theory |
---|
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.
The field of fractions of an integral domain is sometimes denoted by or , and the construction is sometimes also called the fraction field, field of quotients, or quotient field of . All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring that is not an integral domain, the analogous construction is called the localization or ring of quotients.
Given an integral domain and letting , we define an equivalence relation on by letting whenever . We denote the equivalence class of by . This notion of equivalence is motivated by the rational numbers , which have the same property with respect to the underlying ring of integers.
Then the field of fractions is the set with addition given by
and multiplication given by
One may check that these operations are well-defined and that, for any integral domain , is indeed a field. In particular, for , the multiplicative inverse of is as expected: .
The embedding of in maps each in to the fraction for any nonzero (the equivalence class is independent of the choice ). This is modeled on the identity .
The field of fractions of is characterized by the following universal property:
There is a categorical interpretation of this construction. Let be the category of integral domains and injective ring maps. The functor from to the category of fields that takes every integral domain to its fraction field and every homomorphism to the induced map on fields (which exists by the universal property) is the left adjoint of the inclusion functor from the category of fields to . Thus the category of fields (which is a full subcategory) is a reflective subcategory of .
A multiplicative identity is not required for the role of the integral domain; this construction can be applied to any nonzero commutative rng with no nonzero zero divisors. The embedding is given by for any nonzero . [1]
For any commutative ring and any multiplicative set in , the localization is the commutative ring consisting of fractions
with and , where now is equivalent to if and only if there exists such that .
Two special cases of this are notable:
Note that it is permitted for to contain 0, but in that case will be the trivial ring.
The semifield of fractions of a commutative semiring in which every nonzero element is (multiplicatively) cancellative is the smallest semifield in which it can be embedded. (Note that, unlike the case of rings, a semiring with no zero divisors can still have nonzero elements that are not cancellative. For example, let denote the tropical semiring and let be the polynomial semiring over . Then has no zero divisors, but the element is not cancellative because ).
The elements of the semifield of fractions of the commutative semiring are equivalence classes written as
with and in and .
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit).
In algebra, a monic polynomial is a non-zero univariate polynomial in which the leading coefficient is equal to 1. That is to say, a monic polynomial is one that can be written as
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.
In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.
In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words,
In abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.
In mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed.
In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.
This is a glossary of algebraic geometry.