Field of fractions

Last updated

In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.

Contents

The field of fractions of an integral domain is sometimes denoted by or , and the construction is sometimes also called the fraction field, field of quotients, or quotient field of . All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring that is not an integral domain, the analogous construction is called the localization or ring of quotients.

Definition

Given an integral domain and letting , we define an equivalence relation on by letting whenever . We denote the equivalence class of by . This notion of equivalence is motivated by the rational numbers , which have the same property with respect to the underlying ring of integers.

Then the field of fractions is the set with addition given by

and multiplication given by

One may check that these operations are well-defined and that, for any integral domain , is indeed a field. In particular, for , the multiplicative inverse of is as expected: .

The embedding of in maps each in to the fraction for any nonzero (the equivalence class is independent of the choice ). This is modeled on the identity .

The field of fractions of is characterized by the following universal property:

if is an injective ring homomorphism from into a field , then there exists a unique ring homomorphism that extends .

There is a categorical interpretation of this construction. Let be the category of integral domains and injective ring maps. The functor from to the category of fields that takes every integral domain to its fraction field and every homomorphism to the induced map on fields (which exists by the universal property) is the left adjoint of the inclusion functor from the category of fields to . Thus the category of fields (which is a full subcategory) is a reflective subcategory of .

A multiplicative identity is not required for the role of the integral domain; this construction can be applied to any nonzero commutative rng with no nonzero zero divisors. The embedding is given by for any nonzero . [1]

Examples

Generalizations

Localization

For any commutative ring and any multiplicative set in , the localization is the commutative ring consisting of fractions

with and , where now is equivalent to if and only if there exists such that .

Two special cases of this are notable:

Note that it is permitted for to contain 0, but in that case will be the trivial ring.

Semifield of fractions

The semifield of fractions of a commutative semiring with no zero divisors is the smallest semifield in which it can be embedded.

The elements of the semifield of fractions of the commutative semiring are equivalence classes written as

with and in .

See also

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Prime ideal</span> Ideal in a ring which has properties similar to prime elements

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

<span class="mw-page-title-main">Rational number</span> Quotient of two integers

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold

In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

This is a glossary of algebraic geometry.

References

  1. Hungerford, Thomas W. (1980). Algebra (Revised 3rd ed.). New York: Springer. pp. 142–144. ISBN   3540905189.
  2. Vinberg, Ėrnest Borisovich (2003). A course in algebra. American Mathematical Society. p. 131. ISBN   978-0-8218-8394-5.
  3. Foldes, Stephan (1994). Fundamental structures of algebra and discrete mathematics . Wiley. p.  128. ISBN   0-471-57180-6.
  4. Grillet, Pierre Antoine (2007). "3.5 Rings: Polynomials in One Variable". Abstract algebra. Springer. p. 124. ISBN   978-0-387-71568-1.
  5. Marecek, Lynn; Mathis, Andrea Honeycutt (6 May 2020). Intermediate Algebra 2e. OpenStax. §7.1.
  6. Mikusiński, Jan (14 July 2014). Operational Calculus. Elsevier. ISBN   9781483278933.