In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum (or maximum) and addition replacing the usual ("classical") operations of addition and multiplication, respectively.
The tropical semiring has various applications (see tropical analysis), and forms the basis of tropical geometry. The name tropical is a reference to the Hungarian-born computer scientist Imre Simon, so named because he lived and worked in Brazil. [1]
The min tropical semiring (or min-plus semiring or min-plus algebra) is the semiring (, , ), with the operations:
The operations and are referred to as tropical addition and tropical multiplication respectively. The identity element for is , and the identity element for is 0.
Similarly, the max tropical semiring (or max-plus semiring or max-plus algebra or Arctic semiring) is the semiring (, , ), with operations:
The identity element unit for is , and the identity element unit for is 0.
The two semirings are isomorphic under negation , and generally one of these is chosen and referred to simply as the tropical semiring. Conventions differ between authors and subfields: some use the min convention, some use the max convention.
The two tropical semirings are the limit ("tropicalization", "dequantization") of the log semiring as the base goes to infinity (max-plus semiring) or to zero (min-plus semiring).
Tropical addition is idempotent, thus a tropical semiring is an example of an idempotent semiring.
A tropical semiring is also referred to as a tropical algebra, [2] though this should not be confused with an associative algebra over a tropical semiring.
Tropical exponentiation is defined in the usual way as iterated tropical products.
The tropical semiring operations model how valuations behave under addition and multiplication in a valued field. A real-valued field is a field equipped with a function
which satisfies the following properties for all , in :
Therefore the valuation v is almost a semiring homomorphism from K to the tropical semiring, except that the homomorphism property can fail when two elements with the same valuation are added together.
Some common valued fields:
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.
In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.
In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.
In mathematics, a discrete valuation is an integer valuation on a field K; that is, a function:
In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition:
In mathematics, loop algebras are certain types of Lie algebras, of particular interest in theoretical physics.
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.
In mathematics, an algebraic structure consisting of a non-empty set and a ternary mapping may be called a ternary system. A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation is defined by . Thus, we can think of a planar ternary ring as a generalization of a field where the ternary operation takes the place of both addition and multiplication.
In mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed.
In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory.
In mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.g., logarithmic addition, etc. As usual in tropical analysis, the operations are denoted by ⊕ and ⊗ to distinguish them from the usual addition + and multiplication ×. These operations depend on the choice of base b for the exponent and logarithm, which corresponds to a scale factor, and are well-defined for any positive base other than 1; using a base b < 1 is equivalent to using a negative sign and using the inverse 1/b > 1. If not qualified, the base is conventionally taken to be e or 1/e, which corresponds to e with a negative.
In mathematics, more precisely in formal language theory, the profinite words are a generalization of the notion of finite words into a complete topological space. This notion allows the use of topology to study languages and finite semigroups. For example, profinite words are used to give an alternative characterization of the algebraic notion of a variety of finite semigroups.
In tropical analysis, tropical cryptography refers to the study of a class of cryptographic protocols built upon tropical algebras. In many cases, tropical cryptographic schemes have arisen from adapting classical (non-tropical) schemes to instead rely on tropical algebras. The case for the use of tropical algebras in cryptography rests on at least two key features of tropical mathematics: in the tropical world, there is no classical multiplication, and the problem of solving systems of tropical polynomial equations has been shown to be NP-hard.
In the mathematical discipline of idempotent analysis, tropical analysis is the study of the tropical semiring.
In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.
In mathematics, an algebra such as has multiplication whose associativity is well-defined on the nose. This means for any real numbers we have