Valuation (algebra)

Last updated

In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

Contents

Definition

One starts with the following objects:

The ordering and group law on Γ are extended to the set Γ ∪ {∞} [a] by the rules

Then a valuation of K is any map

v : K → Γ ∪ {∞}

that satisfies the following properties for all a, b in K:

A valuation v is trivial if v(a) = 0 for all a in K×, otherwise it is non-trivial.

The second property asserts that any valuation is a group homomorphism on K×. The third property is a version of the triangle inequality on metric spaces adapted to an arbitrary Γ (see Multiplicative notation below). For valuations used in geometric applications, the first property implies that any non-empty germ of an analytic variety near a point contains that point.

The valuation can be interpreted as the order of the leading-order term. [b] The third property then corresponds to the order of a sum being the order of the larger term, [c] unless the two terms have the same order, in which case they may cancel and the sum may have larger order.

For many applications, Γ is an additive subgroup of the real numbers [d] in which case ∞ can be interpreted as +∞ in the extended real numbers; note that for any real number a, and thus +∞ is the unit under the binary operation of minimum. The real numbers (extended by +∞) with the operations of minimum and addition form a semiring, called the min tropical semiring, [e] and a valuation v is almost a semiring homomorphism from K to the tropical semiring, except that the homomorphism property can fail when two elements with the same valuation are added together.

Multiplicative notation and absolute values

The concept was developed by Emil Artin in his book Geometric Algebra writing the group in multiplicative notation as (Γ, ·, ≥): [1]

Instead of ∞, we adjoin a formal symbol O to Γ, with the ordering and group law extended by the rules

Then a valuation of K is any map

||v : K → Γ ∪ {O}

satisfying the following properties for all a, bK:

(Note that the directions of the inequalities are reversed from those in the additive notation.)

If Γ is a subgroup of the positive real numbers under multiplication, the last condition is the ultrametric inequality, a stronger form of the triangle inequality |a+b|v|a|v + |b|v, and ||v is an absolute value. In this case, we may pass to the additive notation with value group by taking v+(a) = log |a|v.

Each valuation on K defines a corresponding linear preorder: ab|a|v|b|v. Conversely, given a "" satisfying the required properties, we can define valuation |a|v = {b: baab}, with multiplication and ordering based on K and .

Terminology

In this article, we use the terms defined above, in the additive notation. However, some authors use alternative terms:

Associated objects

There are several objects defined from a given valuation v : K → Γ ∪ {∞} ;

Basic properties

Equivalence of valuations

Two valuations v1 and v2 of K with valuation group Γ1 and Γ2, respectively, are said to be equivalent if there is an order-preserving group isomorphism φ : Γ1 → Γ2 such that v2(a) = φ(v1(a)) for all a in K×. This is an equivalence relation.

Two valuations of K are equivalent if and only if they have the same valuation ring.

An equivalence class of valuations of a field is called a place. Ostrowski's theorem gives a complete classification of places of the field of rational numbers these are precisely the equivalence classes of valuations for the p-adic completions of

Extension of valuations

Let v be a valuation of K and let L be a field extension of K. An extension of v (to L) is a valuation w of L such that the restriction of w to K is v. The set of all such extensions is studied in the ramification theory of valuations.

Let L/K be a finite extension and let w be an extension of v to L. The index of Γv in Γw, e(w/v) = w : Γv], is called the reduced ramification index of w over v. It satisfies e(w/v)  [L : K] (the degree of the extension L/K). The relative degree of w over v is defined to be f(w/v) = [Rw/mw : Rv/mv] (the degree of the extension of residue fields). It is also less than or equal to the degree of L/K. When L/K is separable, the ramification index of w over v is defined to be e(w/v)pi, where pi is the inseparable degree of the extension Rw/mw over Rv/mv.

Complete valued fields

When the ordered abelian group Γ is the additive group of the integers, the associated valuation is equivalent to an absolute value, and hence induces a metric on the field K. If K is complete with respect to this metric, then it is called a complete valued field. If K is not complete, one can use the valuation to construct its completion, as in the examples below, and different valuations can define different completion fields.

In general, a valuation induces a uniform structure on K, and K is called a complete valued field if it is complete as a uniform space. There is a related property known as spherical completeness: it is equivalent to completeness if but stronger in general.

Examples

p-adic valuation

The most basic example is the p-adic valuation νp associated to a prime integer p, on the rational numbers with valuation ring where is the localization of at the prime ideal . The valuation group is the additive integers For an integer the valuation νp(a) measures the divisibility of a by powers of p:

and for a fraction, νp(a/b) = νp(a) νp(b).

Writing this multiplicatively yields the p-adic absolute value, which conventionally has as base , so .

The completion of with respect to νp is the field of p-adic numbers.

Order of vanishing

Let K = F(x), the rational functions on the affine line X = F1, and take a point a X. For a polynomial with , define va(f) = k, the order of vanishing at x = a; and va(f /g) = va(f) va(g). Then the valuation ring R consists of rational functions with no pole at x = a, and the completion is the formal Laurent series ring F((xa)). This can be generalized to the field of Puiseux series K{{t}} (fractional powers), the Levi-Civita field (its Cauchy completion), and the field of Hahn series, with valuation in all cases returning the smallest exponent of t appearing in the series.

π-adic valuation

Generalizing the previous examples, let R be a principal ideal domain, K be its field of fractions, and π be an irreducible element of R. Since every principal ideal domain is a unique factorization domain, every non-zero element a of R can be written (essentially) uniquely as

where the e's are non-negative integers and the pi are irreducible elements of R that are not associates of π. In particular, the integer ea is uniquely determined by a.

The π-adic valuation of K is then given by

If π' is another irreducible element of R such that (π') = (π) (that is, they generate the same ideal in R), then the π-adic valuation and the π'-adic valuation are equal. Thus, the π-adic valuation can be called the P-adic valuation, where P = (π).

P-adic valuation on a Dedekind domain

The previous example can be generalized to Dedekind domains. Let R be a Dedekind domain, K its field of fractions, and let P be a non-zero prime ideal of R. Then, the localization of R at P, denoted RP, is a principal ideal domain whose field of fractions is K. The construction of the previous section applied to the prime ideal PRP of RP yields the P-adic valuation of K.

Vector spaces over valuation fields

Suppose that Γ {0} is the set of non-negative real numbers under multiplication. Then we say that the valuation is non-discrete if its range (the valuation group) is infinite (and hence has an accumulation point at 0).

Suppose that X is a vector space over K and that A and B are subsets of X. Then we say that A absorbs B if there exists a αK such that λK and |λ| ≥ |α| implies that B ⊆ λ A. A is called radial or absorbing if A absorbs every finite subset of X. Radial subsets of X are invariant under finite intersection. Also, A is called circled if λ in K and |λ| ≥ |α| implies λ A ⊆ A. The set of circled subsets of L is invariant under arbitrary intersections. The circled hull of A is the intersection of all circled subsets of X containing A.

Suppose that X and Y are vector spaces over a non-discrete valuation field K, let A ⊆ X, B ⊆ Y, and let f : X → Y be a linear map. If B is circled or radial then so is . If A is circled then so is f(A) but if A is radial then f(A) will be radial under the additional condition that f is surjective.

See also

Notes

  1. The symbol ∞ denotes an element not in Γ, with no other meaning. Its properties are simply defined by the given axioms.
  2. With the min convention here, the valuation is rather interpreted as the negative of the order of the leading order term, but with the max convention it can be interpreted as the order.
  3. Again, swapped since using minimum convention.
  4. Every Archimedean group is isomorphic to a subgroup of the real numbers under addition, but non-Archimedean ordered groups exist, such as the additive group of a non-Archimedean ordered field.
  5. In the tropical semiring, minimum and addition of real numbers are considered tropical addition and tropical multiplication; these are the semiring operations.

Related Research Articles

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, a field K is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation v and if its residue field k is finite. In general, a local field is a locally compact topological field with respect to a non-discrete topology. The real numbers R, and the complex numbers C are Archimedean local fields. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

<span class="mw-page-title-main">Lindemann–Weierstrass theorem</span> On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum and addition replacing the usual ("classical") operations of addition and multiplication, respectively.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In mathematics, a p-adically closed field is a field that enjoys a closure property that is a close analogue for p-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, a Berkovich space, introduced by Berkovich, is a version of an analytic space over a non-Archimedean field, refining Tate's notion of a rigid analytic space.

References

  1. Emil Artin Geometric Algebra, pages 47 to 49, via Internet Archive