Absolute value (algebra)

Last updated

In algebra, an absolute value (also called a valuation, magnitude, or norm, [1] although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if D is an integral domain, then an absolute value is any mapping |x| from D to the real numbers R satisfying:

Contents

(non-negativity)
if and only if (positive definiteness)
(multiplicativity)
(triangle inequality)

It follows from these axioms that |1| = 1 and |−1| = 1. Furthermore, for every positive integer n,

|n| = |1 + 1 + ... + 1 (n times)| = |−1  1  ...  1 (n times)|  n.

The classical "absolute value" is one in which, for example, |2| = 2, but many other functions fulfill the requirements stated above, for instance the square root of the classical absolute value (but not the square thereof).

An absolute value induces a metric (and thus a topology) by

Examples

Types of absolute value

The trivial absolute value is the absolute value with |x| = 0 when x = 0 and |x| = 1 otherwise. [2] Every integral domain can carry at least the trivial absolute value. The trivial value is the only possible absolute value on a finite field because any non-zero element can be raised to some power to yield 1.

If an absolute value satisfies the stronger property |x + y|  max(|x|, |y|) for all x and y, then |x| is called an ultrametric or non-Archimedean absolute value, and otherwise an Archimedean absolute value.

Places

If |x|1 and |x|2 are two absolute values on the same integral domain D, then the two absolute values are equivalent if |x|1 < 1 if and only if |x|2 < 1 for all x. If two nontrivial absolute values are equivalent, then for some exponent e we have |x|1e = |x|2 for all x. Raising an absolute value to a power less than 1 results in another absolute value, but raising to a power greater than 1 does not necessarily result in an absolute value. (For instance, squaring the usual absolute value on the real numbers yields a function which is not an absolute value because it violates the rule |x+y|  |x|+|y|.) Absolute values up to equivalence, or in other words, an equivalence class of absolute values, is called a place .

Ostrowski's theorem states that the nontrivial places of the rational numbers Q are the ordinary absolute value and the p-adic absolute value for each prime p. [3] For a given prime p, any rational number q can be written as pn(a/b), where a and b are integers not divisible by p and n is an integer. The p-adic absolute value of q is

Since the ordinary absolute value and the p-adic absolute values are absolute values according to the definition above, these define places.

Valuations

If for some ultrametric absolute value and any base b > 1, we define ν(x) = −logb|x| for x  0 and ν(0) = ∞, where ∞ is ordered to be greater than all real numbers, then we obtain a function from D to R  {∞}, with the following properties:

Such a function is known as a valuation in the terminology of Bourbaki, but other authors use the term valuation for absolute value and then say exponential valuation instead of valuation.

Completions

Given an integral domain D with an absolute value, we can define the Cauchy sequences of elements of D with respect to the absolute value by requiring that for every ε > 0 there is a positive integer N such that for all integers m, n > N one has |xmxn| < ε. Cauchy sequences form a ring under pointwise addition and multiplication. One can also define null sequences as sequences (an) of elements of D such that |an| converges to zero. Null sequences are a prime ideal in the ring of Cauchy sequences, and the quotient ring is therefore an integral domain. The domain D is embedded in this quotient ring, called the completion of D with respect to the absolute value |x|.

Since fields are integral domains, this is also a construction for the completion of a field with respect to an absolute value. To show that the result is a field, and not just an integral domain, we can either show that null sequences form a maximal ideal, or else construct the inverse directly. The latter can be easily done by taking, for all nonzero elements of the quotient ring, a sequence starting from a point beyond the last zero element of the sequence. Any nonzero element of the quotient ring will differ by a null sequence from such a sequence, and by taking pointwise inversion we can find a representative inverse element.

Another theorem of Alexander Ostrowski has it that any field complete with respect to an Archimedean absolute value is isomorphic to either the real or the complex numbers, and the valuation is equivalent to the usual one. [4] The Gelfand-Tornheim theorem states that any field with an Archimedean valuation is isomorphic to a subfield of C, the valuation being equivalent to the usual absolute value on C. [5]

Fields and integral domains

If D is an integral domain with absolute value |x|, then we may extend the definition of the absolute value to the field of fractions of D by setting

On the other hand, if F is a field with ultrametric absolute value |x|, then the set of elements of F such that |x| ≤ 1 defines a valuation ring, which is a subring D of F such that for every nonzero element x of F, at least one of x or x−1 belongs to D. Since F is a field, D has no zero divisors and is an integral domain. It has a unique maximal ideal consisting of all x such that |x| < 1, and is therefore a local ring.

Notes

  1. Koblitz, Neal (1984). P-adic numbers, p-adic analysis, and zeta-functions (2nd ed.). New York: Springer-Verlag. p. 1. ISBN   978-0-387-96017-3 . Retrieved 24 August 2012. The metrics we'll be dealing with will come from norms on the field F...
  2. Koblitz, Neal (1984). P-adic numbers, p-adic analysis, and zeta-functions (2nd ed.). New York: Springer-Verlag. p. 3. ISBN   978-0-387-96017-3 . Retrieved 24 August 2012. By the 'trivial' norm we mean the norm  ‖ such that ‖0‖ = 0 and ‖x = 1 for x  0.
  3. Cassels (1986) p.16
  4. Cassels (1986) p.33
  5. William Stein (2004-05-06). "Examples of Valuations" . Retrieved 2023-01-28.

Related Research Articles

<span class="mw-page-title-main">Absolute value</span> Distance from zero to a number

In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative, and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.

In mathematics, more specifically in ring theory, a Euclidean domain is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them. Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) = 4.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, the real numbers R, and the complex numbers C are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

<span class="mw-page-title-main">Archimedean property</span> Mathematical property of algebraic structures

In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers and , there is an integer such that . It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder.

<i>p</i>-adic analysis Branch of number theory

In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In mathematics, a discrete valuation is an integer valuation on a field K; that is, a function:

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

<span class="texhtml mvar" style="font-style:italic;">p</span>-adic valuation

In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of .

In number theory, the Lagarias arithmetic derivative or number derivative is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, a Berkovich space, introduced by Berkovich, is a version of an analytic space over a non-Archimedean field, refining Tate's notion of a rigid analytic space.

References