Degree of a field extension

Last updated • 6 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory indeed in any area where fields appear prominently.

Contents

Definition and notation

Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].

The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension E/F is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements).

The degree should not be confused with the transcendence degree of a field; for example, the field Q(X) of rational functions has infinite degree over Q, but transcendence degree only equal to 1.

The multiplicativity formula for degrees

Given three fields arranged in a tower, say K a subfield of L which is in turn a subfield of M, there is a simple relation between the degrees of the three extensions L/K, M/L and M/K:

In other words, the degree going from the "bottom" to the "top" field is just the product of the degrees going from the "bottom" to the "middle" and then from the "middle" to the "top". It is quite analogous to Lagrange's theorem in group theory, which relates the order of a group to the order and index of a subgroup indeed Galois theory shows that this analogy is more than just a coincidence.

The formula holds for both finite and infinite degree extensions. In the infinite case, the product is interpreted in the sense of products of cardinal numbers. In particular, this means that if M/K is finite, then both M/L and L/K are finite.

If M/K is finite, then the formula imposes strong restrictions on the kinds of fields that can occur between M and K, via simple arithmetical considerations. For example, if the degree [M:K] is a prime number p, then for any intermediate field L, one of two things can happen: either [M:L] = p and [L:K] = 1, in which case L is equal to K, or [M:L] = 1 and [L:K] = p, in which case L is equal to M. Therefore, there are no intermediate fields (apart from M and K themselves).

Proof of the multiplicativity formula in the finite case

Suppose that K, L and M form a tower of fields as in the degree formula above, and that both d = [L:K] and e = [M:L] are finite. This means that we may select a basis {u1, ..., ud} for L over K, and a basis {w1, ..., we} for M over L. We will show that the elements umwn, for m ranging through 1, 2, ..., d and n ranging through 1, 2, ..., e, form a basis for M/K; since there are precisely de of them, this proves that the dimension of M/K is de, which is the desired result.

First we check that they span M/K. If x is any element of M, then since the wn form a basis for M over L, we can find elements an in L such that

Then, since the um form a basis for L over K, we can find elements bm,n in K such that for each n,

Then using the distributive law and associativity of multiplication in M we have

which shows that x is a linear combination of the umwn with coefficients from K; in other words they span M over K.

Secondly we must check that they are linearly independent over K. So assume that

for some coefficients bm,n in K. Using distributivity and associativity again, we can group the terms as

and we see that the terms in parentheses must be zero, because they are elements of L, and the wn are linearly independent over L. That is,

for each n. Then, since the bm,n coefficients are in K, and the um are linearly independent over K, we must have that bm,n = 0 for all m and all n. This shows that the elements umwn are linearly independent over K. This concludes the proof.

Proof of the formula in the infinite case

In this case, we start with bases uα and wβ of L/K and M/L respectively, where α is taken from an indexing set A, and β from an indexing set B. Using an entirely similar argument as the one above, we find that the products uαwβ form a basis for M/K. These are indexed by the cartesian product A×B, which by definition has cardinality equal to the product of the cardinalities of A and B.

Examples

Generalization

Given two division rings E and F with F contained in E and the multiplication and addition of F being the restriction of the operations in E, we can consider E as a vector space over F in two ways: having the scalars act on the left, giving a dimension [E:F]l, and having them act on the right, giving a dimension [E:F]r. The two dimensions need not agree. Both dimensions however satisfy a multiplication formula for towers of division rings; the proof above applies to left-acting scalars without change.

Related Research Articles

In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V, together with the vector space structure of pointwise addition and scalar multiplication by constants.

Field (mathematics) Algebraic structure with addition, multiplication and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a linear map is a mapping VW between two modules that preserves the operations of addition and scalar multiplication.

In mathematics, the tensor productVW of two vector spaces V and W is itself a vector space, endowed with the operation of bilinear composition, denoted by , from ordered pairs in the Cartesian product V × W onto VW in a way that generalizes the outer product.

Ring (mathematics) Algebraic structure with addition and multiplication

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In mathematics, a formal power series is a generalization of a polynomial, where the number of terms is allowed to be infinite; this implies giving up the possibility of replacing the variable in the polynomial with an arbitrary number. Thus a formal power series differs from a polynomial in that it may have infinitely many terms, and differs from a power series, whose variables can take on numerical values. One way to view a formal power series is as an infinite ordered sequence of numbers. In this case, the powers of the variable are used only to indicate the order of the coefficients, so that the coefficient of is the fifth term in the sequence. In combinatorics, formal power series provide representations of numerical sequences and of multisets, and for instance allow concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. More generally, formal power series can include series with any finite number of variables, and with coefficients in an arbitrary ring. Formal power series can be created from Taylor polynomials using formal moduli.

In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits or decomposes into linear factors.

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In number theory, the local zeta functionZ(Vs) is defined as

In field theory, the primitive element theorem or Artin's theorem on primitive elements is a result characterizing the finite degree field extensions that possess a primitive element, or simple extensions. It says that a finite extension is simple if and only if there are only finitely many intermediate fields. In particular, finite separable extensions are simple.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory.

In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.

This page lists some examples of vector spaces. See vector space for the definitions of terms used on this page. See also: dimension, basis.

In mathematics, essential dimension is an invariant defined for certain algebraic structures such as algebraic groups and quadratic forms. It was introduced by J. Buhler and Z. Reichstein and in its most generality defined by A. Merkurjev.

References