In mathematics, the Levi-Civita field, named after Tullio Levi-Civita, [1] is a non-Archimedean ordered field; i.e., a system of numbers containing infinite and infinitesimal quantities. It is usually denoted .
Each member can be constructed as a formal series of the form
where is the set of rational numbers, the coefficients are real numbers, and is to be interpreted as a fixed positive infinitesimal. We require that for every rational number , there are only finitely many less than with ; this restriction is necessary in order to make multiplication and division well defined and unique. Two such series are considered equal only if all their coefficients are equal. The ordering is defined according to the dictionary ordering of the list of coefficients, which is equivalent to the assumption that is an infinitesimal.
The real numbers are embedded in this field as series in which all of the coefficients vanish except .
If and are two Levi-Civita series, then
(One can check that for every the set is finite, so that all the products are well-defined, and that the resulting series defines a valid Levi-Civita series.)
Equipped with those operations and order, the Levi-Civita field is indeed an ordered field extension of where the series is a positive infinitesimal.
The Levi-Civita field is real-closed, meaning that it can be algebraically closed by adjoining an imaginary unit (i), or by letting the coefficients be complex. It is rich enough to allow a significant amount of analysis to be done, but its elements can still be represented on a computer in the same sense that real numbers can be represented using floating point. It is the basis of automatic differentiation, a way to perform differentiation in cases that are intractable by symbolic differentiation or finite-difference methods. [2]
The Levi-Civita field is also Cauchy complete, meaning that relativizing the definitions of Cauchy sequence and convergent sequence to sequences of Levi-Civita series, each Cauchy sequence in the field converges. Equivalently, it has no proper dense ordered field extension.
As an ordered field, it has a natural valuation given by the rational exponent corresponding to the first non zero coefficient of a Levi-Civita series. The valuation ring is that of series bounded by real numbers, the residue field is , and the value group is . The resulting valued field is Henselian (being real closed with a convex valuation ring) but not spherically complete. Indeed, the field of Hahn series with real coefficients and value group is a proper immediate extension, containing series such as which are not in the Levi-Civita field.
The Levi-Civita field is the Cauchy-completion of the field of Puiseux series over the field of real numbers, that is, it is a dense extension of without proper dense extension. Here is a list of some of its notable proper subfields and its proper ordered field extensions:
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences.
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a real function of real numbers is said to be uniformly continuous if there is a positive real number such that function values over any function domain interval of the size are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number , then there is a positive real number such that at any and in any function interval of the size .
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + bε, where a and b are real numbers, and ε is a symbol taken to satisfy with .
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-eth" item in a sequence.
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, as typically construed, states that given two positive numbers and , there is an integer such that . It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder.
In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function.
In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.
In mathematics, Hahn series are a type of formal infinite series. They are a generalization of Puiseux series and were first introduced by Hans Hahn in 1907. They allow for arbitrary exponents of the indeterminate so long as the set supporting them forms a well-ordered subset of the value group. Hahn series were first introduced, as groups, in the course of the proof of the Hahn embedding theorem and then studied by him in relation to Hilbert's second problem.
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Such fields will contain infinitesimal and infinitely large elements, suitably defined.
In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.