Adequality

Last updated

Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus. According to André Weil, Fermat "introduces the technical term adaequalitas, adaequare, etc., which he says he has borrowed from Diophantus. As Diophantus V.11 shows, it means an approximate equality, and this is indeed how Fermat explains the word in one of his later writings." (Weil 1973). [2] Diophantus coined the word παρισότης (parisotēs) to refer to an approximate equality. [3] Claude Gaspard Bachet de Méziriac translated Diophantus's Greek word into Latin as adaequalitas.[ citation needed ] Paul Tannery's French translation of Fermat’s Latin treatises on maxima and minima used the words adéquation and adégaler.[ citation needed ]

Contents

Fermat's method

Fermat used adequality first to find maxima of functions, and then adapted it to find tangent lines to curves.

To find the maximum of a term , Fermat equated (or more precisely adequated) and and after doing algebra he could cancel out a factor of and then discard any remaining terms involving To illustrate the method by Fermat's own example, consider the problem of finding the maximum of (In Fermat's words, it is to divide a line of length at a point , such that the product of the two resulting parts be a maximum. [1] ) Fermat adequated with . That is (using the notation to denote adequality, introduced by Paul Tannery):

Canceling terms and dividing by Fermat arrived at

Removing the terms that contained Fermat arrived at the desired result that the maximum occurred when .

Fermat also used his principle to give a mathematical derivation of Snell's laws of refraction directly from the principle that light takes the quickest path. [4]

Descartes' criticism

Fermat's method was highly criticized by his contemporaries, particularly Descartes. Victor Katz suggests this is because Descartes had independently discovered the same new mathematics, known as his method of normals, and Descartes was quite proud of his discovery. Katz also notes that while Fermat's methods were closer to the future developments in calculus, Descartes' methods had a more immediate impact on the development. [5]

Scholarly controversy

Both Newton and Leibniz referred to Fermat's work as an antecedent of infinitesimal calculus. Nevertheless, there is disagreement amongst modern scholars about the exact meaning of Fermat's adequality. Fermat's adequality was analyzed in a number of scholarly studies. In 1896, Paul Tannery published a French translation of Fermat’s Latin treatises on maxima and minima (Fermat, Œuvres, Vol. III, pp. 121–156). Tannery translated Fermat's term as “adégaler” and adopted Fermat’s “adéquation”. Tannery also introduced the symbol for adequality in mathematical formulas.

Heinrich Wieleitner (1929) [6] wrote:

Fermat replaces A with A+E. Then he sets the new expression roughly equal (angenähert gleich) to the old one, cancels equal terms on both sides, and divides by the highest possible power of E. He then cancels all terms which contain E and sets those that remain equal to each other. From that [the required] A results. That E should be as small as possible is nowhere said and is at best expressed by the word "adaequalitas".

(Wieleitner uses the symbol .)


Max Miller (1934) [7] wrote:

Thereupon one should put the both terms, which express the maximum and the minimum, approximately equal (näherungsweise gleich), as Diophantus says.

(Miller uses the symbol .)


Jean Itard (1948) [8] wrote:

One knows that the expression "adégaler" is adopted by Fermat from Diophantus, translated by Xylander and by Bachet. It is about an approximate equality (égalité approximative) ".

(Itard uses the symbol .)


Joseph Ehrenfried Hofmann (1963) [9] wrote:

Fermat chooses a quantity h, thought as sufficiently small, and puts f(x + h) roughly equal (ungefähr gleich) to f(x). His technical term is adaequare.

(Hofmann uses the symbol .)


Peer Strømholm (1968) [10] wrote:

The basis of Fermat's approach was the comparition of two expressions which, though they had the same form, were not exactly equal. This part of the process he called "comparare par adaequalitatem" or "comparer per adaequalitatem", and it implied that the otherwise strict identity between the two sides of the "equation" was destroyed by the modification of the variable by a small amount:

.

This, I believe, was the real significance of his use of Diophantos' πἀρισον, stressing the smallness of the variation. The ordinary translation of 'adaequalitas' seems to be "approximate equality", but I much prefer "pseudo-equality" to present Fermat's thought at this point.

He further notes that "there was never in M1 (Method 1) any question of the variation E being put equal to zero. The words Fermat used to express the process of suppressing terms containing E was 'elido', 'deleo', and 'expungo', and in French 'i'efface' and 'i'ôte'. We can hardly believe that a sane man wishing to express his meaning and searching for words, would constantly hit upon such tortuous ways of imparting the simple fact that the terms vanished because E was zero.(p. 51) Claus Jensen (1969) [11] wrote:

Moreover, in applying the notion of adégalité – which constitutes the basis of Fermat's general method of constructing tangents, and by which is meant a comparition of two magnitudes as if they were equal, although they are in fact not ("tamquam essent aequalia, licet revera aequalia non sint") – I will employ the nowadays more usual symbol .

The Latin quotation comes from Tannery's 1891 edition of Fermat, volume 1, page 140. Michael Sean Mahoney (1971) [12] wrote:

Fermat's Method of maxima and minima, which is clearly applicable to any polynomial P(x), originally rested on purely finitistic algebraic foundations. It assumed, counterfactually, the inequality of two equal roots in order to determine, by Viete's theory of equations, a relation between those roots and one of the coefficients of the polynomial, a relation that was fully general. This relation then led to an extreme-value solution when Fermat removed his counterfactual assumption and set the roots equal. Borrowing a term from Diophantus, Fermat called this counterfactual equality 'adequality'.

(Mahoney uses the symbol .) On p. 164, end of footnote 46, Mahoney notes that one of the meanings of adequality is approximate equality or equality in the limiting case. Charles Henry Edwards, Jr. (1979) [13] wrote:

For example, in order to determine how to subdivide a segment of length into two segments and whose product is maximal, that is to find the rectangle with perimeter that has the maximal area, he [Fermat] proceeds as follows. First he substituted

(he used A, E instead of x, e) for the unknown x, and then wrote down the following "pseudo-equality" to compare the resulting expression with the original one:

After canceling terms, he divided through by e to obtain Finally he discarded the remaining term containing e, transforming the pseudo-equality into the true equality that gives the value of x which makes maximal. Unfortunately, Fermat never explained the logical basis for this method with sufficient clarity or completeness to prevent disagreements between historical scholars as to precisely what he meant or intended."

Kirsti Andersen (1980) [14] wrote:

The two expressions of the maximum or minimum are made "adequal", which means something like as nearly equal as possible.

(Andersen uses the symbol .) Herbert Breger (1994) [15] wrote:

I want to put forward my hypothesis: Fermat used the word "adaequare" in the sense of"to put equal" ... In a mathematical context, the only difference between "aequare" and "adaequare" seems to be that the latter gives more stress on the fact that the equality is achieved.

(Page 197f.) John Stillwell (Stillwell 2006 p. 91) wrote:

Fermat introduced the idea of adequality in 1630s but he was ahead of his time. His successors were unwilling to give up the convenience of ordinary equations, preferring to use equality loosely rather than to use adequality accurately. The idea of adequality was revived only in the twentieth century, in the so-called non-standard analysis.

Enrico Giusti (2009) [16] cites Fermat's letter to Marin Mersenne where Fermat wrote:

Cette comparaison par adégalité produit deux termes inégaux qui enfin produisent l'égalité (selon ma méthode) qui nous donne la solution de la question" ("This comparison by adequality produces two unequal terms which finally produce the equality (following my method) which gives us the solution of the problem")..

Giusti notes in a footnote that this letter seems to have escaped Breger's notice.

Klaus Barner (2011) [17] asserts that Fermat uses two different Latin words (aequabitur and adaequabitur) to replace the nowadays usual equals sign, aequabitur when the equation concerns a valid identity between two constants, a universally valid (proved) formula, or a conditional equation, adaequabitur, however, when the equation describes a relation between two variables, which are not independent (and the equation is no valid formula). On page 36, Barner writes: "Why did Fermat continually repeat his inconsistent procedure for all his examples for the method of tangents? Why did he never mention the secant, with which he in fact operated? I do not know."

Katz, Schaps, Shnider (2013) [18] argue that Fermat's application of the technique to transcendental curves such as the cycloid shows that Fermat's technique of adequality goes beyond a purely algebraic algorithm, and that, contrary to Breger's interpretation, the technical terms parisotes as used by Diophantus and adaequalitas as used by Fermat both mean "approximate equality". They develop a formalisation of Fermat's technique of adequality in modern mathematics as the standard part function which rounds off a finite hyperreal number to its nearest real number.

See also

Related Research Articles

<span class="mw-page-title-main">Analytic geometry</span> Study of geometry using a coordinate system

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Diophantus</span> Greek mathematician (3rd century AD)

Diophantus of Alexandria was an Alexandrian mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. Diophantine equations and Diophantine approximations are important areas of mathematical research. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought.

<span class="mw-page-title-main">Pell's equation</span> Type of Diophantine equation

Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c if the line passes through the point (c, f ) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

<span class="mw-page-title-main">Fermat's principle</span> Principle of least time

Fermat's principle, also known as the principle of least time, is the link between ray optics and wave optics. In its original "strong" form, Fermat's principle states that the path taken by a ray between two given points is the path that can be traveled in the least time. In order to be true in all cases, this statement must be weakened by replacing the "least" time with a time that is "stationary" with respect to variations of the path — so that a deviation in the path causes, at most, a second-order change in the traversal time. To put it loosely, a ray path is surrounded by close paths that can be traversed in very close times. It can be shown that this technical definition corresponds to more intuitive notions of a ray, such as a line of sight or the path of a narrow beam.

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Brachistochrone curve</span> Fastest curve descent without friction

In physics and mathematics, a brachistochrone curve, or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time. The problem was posed by Johann Bernoulli in 1696.

<span class="mw-page-title-main">Maxima and minima</span> Largest and smallest value taken by a function takes at a given point

In mathematical analysis, the maxima and minima of a function, known collectively as extrema, are the largest and smallest value of the function, either within a given range, or on the entire domain. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

<span class="mw-page-title-main">Claude Gaspar Bachet de Méziriac</span> French mathematician

Claude Gaspar Bachet Sieur de Méziriac was a French mathematician and poet born in Bourg-en-Bresse, at that time belonging to Duchy of Savoy. He wrote Problèmes plaisans et délectables qui se font par les nombres, Les éléments arithmétiques, and a Latin translation of the Arithmetica of Diophantus. He also discovered means of solving indeterminate equations using continued fractions, a method of constructing magic squares, and a proof of Bézout's identity.

In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East, and still later again in medieval Europe and in India. Infinitesimal calculus was developed in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz independently of each other. An argument over priority led to the Leibniz–Newton calculus controversy which continued until the death of Leibniz in 1716. The development of calculus and its uses within the sciences have continued to the present day.

<i>The Compendious Book on Calculation by Completion and Balancing</i> Arabic Mathematical treatise of Algebra

The Compendious Book on Calculation by Completion and Balancing, also known as Al-Jabr (الجبر), is an Arabic mathematical treatise on algebra written by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī around 820 CE while he was in the Abbasid capital of Baghdad, modern-day Iraq. Al-Jabr was a landmark work in the history of mathematics, establishing algebra as an independent discipline, and with the term "algebra" itself derived from Al-Jabr.

<span class="mw-page-title-main">René-François de Sluse</span>

René-François Walter de Sluse was a Walloon mathematician and churchman, who served as the canon of Liège and abbot of Amay.

In mathematics, Fermat's theorem is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point. Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat.

<span class="mw-page-title-main">Pierre de Fermat</span> French mathematician and lawyer

Pierre de Fermat was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' Arithmetica. He was also a lawyer at the Parlement of Toulouse, France.

Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra.

<span class="mw-page-title-main">Timeline of calculus and mathematical analysis</span> Summary of advancements in Calculus

A timeline of calculus and mathematical analysis.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. 1 2 METHOD FOR THE STUDY OF MAXIMA AND MINIMA, English translation of Fermat's treatise Methodus ad disquirendam maximam et minimam. wikisource
  2. See also Weil, A. (1984), Number Theory: An Approach through History from Hammurapi to Legendre, Boston: Birkhäuser, p. 28, ISBN   978-0-8176-4565-6
  3. Katz, Mikhail G.; Schaps, D.; Shnider, S. (2013), "Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond", Perspectives on Science , 21 (3): 283–324, arXiv: 1210.7750 , Bibcode:2012arXiv1210.7750K, doi:10.1162/POSC_a_00101, S2CID   57569974
  4. Grabiner 1983.
  5. Katz 2008.
  6. Wieleitner, H.:Bemerkungen zu Fermats Methode der Aufsuchung von Extremwerten und der Berechnung von Kurventangenten. Jahresbericht der Deutschen Mathematiker-Vereinigung 38 (1929)24–35, p. 25
  7. Miller, M.: Pierre de Fermats Abhandlungen über Maxima und Minima. Akademische Verlagsgesellschaft, Leipzig (1934), p.1
  8. Itard, J. (1948). "" Fermat précurseur du calcul différentiel "". Arch. Internat. Hist. Sci. 27: 589–610. MR   0026600.
  9. Hofmann, J.E.: Über ein Extremwertproblem des Apollonius und seine Behandlung bei Fermat. Nova Acta Leopoldina (2) 27 (167) (1963), 105–113, p.107
  10. Strømholm, Per (1968). "Fermat's methods of maxima and minima and of tangents. A reconstruction". Archive for History of Exact Sciences. 5: 47–69. doi:10.1007/BF00328112. S2CID   118454253.
  11. Jensen, Claus (1969). "Pierre Fermat's Method of Determining Tangents of Curves and Its Application to the Conchoid and the Quadratrix". Centaurus. 14: 72–85. doi:10.1111/j.1600-0498.1969.tb00137.x.
  12. Mahoney, M.S.: Fermat, Pierre de. Dictionary of Scientific Biography, vol. IV, Charles Scribner's Sons, New York (1971), p.569.
  13. Edwards, C.H., Jr.:The historical Development of the Calculus. Springer, New York 1979, p.122f
  14. Andersen, K.: Techniques of the calculus 1630–1660. In: Grattan-Guinness, I. (ed): From the Calculus to Set Theory. An Introductory History. Duckworth, London 1980, 10–48, p.23
  15. Breger, H.: The mysteries of adaequare: A vindication of Fermat. Arch. Hist. Exact Sci. 46 (1994), 193–219
  16. Giusti, Enrico (2009). "Les méthodes des maxima et minima de Fermat". Annales de la Faculté des Sciences de Toulouse : Mathématiques. 18: 59–85. doi:10.5802/afst.1229.
  17. Barner, Klaus (2011). "Fermats «adæquare» – und kein Ende?". Mathematische Semesterberichte. 58: 13–45. doi:10.1007/s00591-010-0083-5. S2CID   115179952.
  18. Katz, Mikhail G.; Schaps, David; Shnider, Steve (2013), "Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond", Perspectives on Science , 21 (3): 283–324, arXiv: 1210.7750 , Bibcode:2012arXiv1210.7750K, doi:10.1162/POSC_a_00101, S2CID   57569974

Bibliography