Elementary Calculus: An Infinitesimal Approach

Last updated

Elementary Calculus: An Infinitesimal Approach
Elementary Calculus, An Infinitesimal Approach.png
Second edition
Author H. Jerome Keisler
LanguageEnglish
Subject Mathematics
PublisherDover
Publication date
1976

Elementary Calculus: An Infinitesimal approach is a textbook by H. Jerome Keisler. The subtitle alludes to the infinitesimal numbers of the hyperreal number system of Abraham Robinson and is sometimes given as An approach using infinitesimals. The book is available freely online and is currently published by Dover. [1]

Contents

Textbook

Keisler's textbook is based on Robinson's construction of the hyperreal numbers. Keisler also published a companion book, Foundations of Infinitesimal Calculus, for instructors, which covers the foundational material in more depth.

Keisler defines all basic notions of the calculus such as continuity (mathematics), derivative, and integral using infinitesimals. The usual definitions in terms of ε–δ techniques are provided at the end of Chapter 5 to enable a transition to a standard sequence.

In his textbook, Keisler used the pedagogical technique of an infinite-magnification microscope, so as to represent graphically, distinct hyperreal numbers infinitely close to each other. Similarly, an infinite-resolution telescope is used to represent infinite numbers.

When one examines a curve, say the graph of ƒ, under a magnifying glass, its curvature decreases proportionally to the magnification power of the lens. Similarly, an infinite-magnification microscope will transform an infinitesimal arc of a graph of ƒ, into a straight line, up to an infinitesimal error (only visible by applying a higher-magnification "microscope"). The derivative of ƒ is then the (standard part of the) slope of that line (see figure).

The standard part function "rounds off" a finite hyperreal to the nearest real number. The "infinitesimal microscope" is used to view an infinitesimal neighborhood of a standard real. Standard part function with two continua.svg
The standard part function "rounds off" a finite hyperreal to the nearest real number. The "infinitesimal microscope" is used to view an infinitesimal neighborhood of a standard real.

Thus the microscope is used as a device in explaining the derivative.

Reception

The book was first reviewed by Errett Bishop, noted for his work in constructive mathematics. Bishop's review was harshly critical; see Criticism of nonstandard analysis. Shortly after, Martin Davis and Hausner published a detailed favorable review, as did Andreas Blass and Keith Stroyan. [2] [3] [4] Keisler's student K. Sullivan, [5] as part of her PhD thesis, performed a controlled experiment involving 5 schools, which found Elementary Calculus to have advantages over the standard method of teaching calculus. [1] [6] Despite the benefits described by Sullivan, the vast majority of mathematicians have not adopted infinitesimal methods in their teaching. [7] Recently, Katz & Katz [8] give a positive account of a calculus course based on Keisler's book. O'Donovan also described his experience teaching calculus using infinitesimals. His initial point of view was positive, [9] but later he found pedagogical difficulties with the approach to nonstandard calculus taken by this text and others. [10]

G. R. Blackley remarked in a letter to Prindle, Weber & Schmidt, concerning Elementary Calculus: An Approach Using Infinitesimals, "Such problems as might arise with the book will be political. It is revolutionary. Revolutions are seldom welcomed by the established party, although revolutionaries often are." [6]

Hrbacek writes that the definitions of continuity, derivative, and integral implicitly must be grounded in the ε–δ method in Robinson's theoretical framework, in order to extend definitions to include nonstandard values of the inputs, claiming that the hope that nonstandard calculus could be done without ε–δ methods could not be realized in full. [11] Błaszczyk et al. detail the usefulness of microcontinuity in developing a transparent definition of uniform continuity, and characterize Hrbacek's criticism as a "dubious lament". [12]

Transfer principle

Between the first and second edition of the Elementary Calculus, much of the theoretical material that was in the first chapter was moved to the epilogue at the end of the book, including the theoretical groundwork of nonstandard analysis.

In the second edition Keisler introduces the extension principle and the transfer principle in the following form:

Every real statement that holds for one or more particular real functions holds for the hyperreal natural extensions of these functions.

Keisler then gives a few examples of real statements to which the principle applies:

See also

Notes

  1. 1 2 Keisler 2011.
  2. Davis & Hausner 1978.
  3. Blass 1978.
  4. Madison & Stroyan 1977.
  5. "UW Math PhD Alumni (1974)". Archived from the original on 7 June 2012. Retrieved 29 November 2011.
  6. 1 2 Sullivan 1976.
  7. Tall 1980.
  8. Katz & Katz 2010.
  9. O'Donovan & Kimber 2006.
  10. O'Donovan 2007.
  11. Hrbacek 2007.
  12. Błaszczyk, Piotr; Katz, Mikhail; Sherry, David (2012), "Ten misconceptions from the history of analysis and their debunking", Foundations of Science , 18: 43–74, arXiv: 1202.4153 , doi:10.1007/s10699-012-9285-8, S2CID   119134151

Related Research Articles

Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta procedures rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

<span class="mw-page-title-main">Abraham Robinson</span> American mathematician

Abraham Robinson was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincorporated into modern mathematics. Nearly half of Robinson's papers were in applied mathematics rather than in pure mathematics.

<span class="mw-page-title-main">Hyperreal number</span> Element of a nonstandard model of the reals, which can be infinite or infinitesimal

In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number is said to be finite if, and only if, for some integer . is said to be infinitesimal if, and only if, for all integers . The term "hyper-real" was introduced by Edwin Hewitt in 1948.

<span class="mw-page-title-main">Infinitesimal</span> Extremely small quantity in calculus; thing so small that there is no way to measure it

In mathematics, an infinitesimal number is a quantity that is closer to 0 than any standard real number, but is not 0. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-th" item in a sequence.

<span class="mw-page-title-main">Leibniz's notation</span> Mathematical notation used for calculus

In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small increments of x and y, respectively, just as Δx and Δy represent finite increments of x and y, respectively.

In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.

In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

Howard Jerome Keisler is an American mathematician, currently professor emeritus at University of Wisconsin–Madison. His research has included model theory and non-standard analysis.

In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then

In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal , the unique real infinitely close to it, i.e. is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat, as well as Leibniz's Transcendental law of homogeneity.

Nonstandard analysis and its offshoot, nonstandard calculus, have been criticized by several authors, notably Errett Bishop, Paul Halmos, and Alain Connes. These criticisms are analyzed below.

In nonstandard analysis, a hyperintegern is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, ...) in the ultrapower construction of the hyperreals.

In nonstandard analysis, a monad or also a halo is the set of points infinitesimally close to a given point.

<span class="mw-page-title-main">Infinity</span> Mathematical concept

Infinity is something which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol .

Abraham Robinson's theory of nonstandard analysis has been applied in a number of fields.

In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by

In nonstandard analysis, a discipline within classical mathematics, microcontinuity (or S-continuity) of an internal function f at a point a is defined as follows:

<span class="mw-page-title-main">Fluxion</span> Historical mathematical concept; form of derivative

A fluxion is the instantaneous rate of change, or gradient, of a fluent at a given point. Fluxions were introduced by Isaac Newton to describe his form of a time derivative. Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method of Fluxions. Fluxions and fluents made up Newton's early calculus.

References

Blass writes: "I suspect that many mathematicians harbor, somewhere in the back of their minds, the formula for arc length (and quickly factor out dx before writing it down)" (p. 35).
"Often, as in the examples above, the nonstandard definition of a concept is simpler than the standard definition (both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types or fewer alternations of quantifiers)" (p. 37).
"The relative simplicity of the nonstandard definitions of some concepts of elementary analysis suggests a pedagogical application in freshman calculus. One could make use of the students' intuitive ideas about infinitesimals (which are usually very vague, but so are their ideas about real numbers) to develop calculus on a nonstandard basis" (p. 38).