Microcontinuity

Last updated

In nonstandard analysis, a discipline within classical mathematics, microcontinuity (or S-continuity) of an internal function f at a point a is defined as follows:

Contents

for all x infinitely close to a, the value f(x) is infinitely close to f(a).

Here x runs through the domain of f. In formulas, this can be expressed as follows:

if then .

For a function f defined on , the definition can be expressed in terms of the halo as follows: f is microcontinuous at if and only if , where the natural extension of f to the hyperreals is still denoted f. Alternatively, the property of microcontinuity at c can be expressed by stating that the composition is constant on the halo of c, where "st" is the standard part function.

History

The modern property of continuity of a function was first defined by Bolzano in 1817. However, Bolzano's work was not noticed by the larger mathematical community until its rediscovery in Heine in the 1860s. Meanwhile, Cauchy's textbook Cours d'Analyse defined continuity in 1821 using infinitesimals as above. [1]

Continuity and uniform continuity

The property of microcontinuity is typically applied to the natural extension f* of a real function f. Thus, f defined on a real interval I is continuous if and only if f* is microcontinuous at every point of I. Meanwhile, f is uniformly continuous on I if and only if f* is microcontinuous at every point (standard and nonstandard) of the natural extension I* of its domain I (see Davis, 1977, p. 96).

Example 1

The real function on the open interval (0,1) is not uniformly continuous because the natural extension f* of f fails to be microcontinuous at an infinitesimal . Indeed, for such an a, the values a and 2a are infinitely close, but the values of f*, namely and are not infinitely close.

Example 2

The function on is not uniformly continuous because f* fails to be microcontinuous at an infinite point . Namely, setting and K = H + e, one easily sees that H and K are infinitely close but f*(H) and f*(K) are not infinitely close.

Uniform convergence

Uniform convergence similarly admits a simplified definition in a hyperreal setting. Thus, a sequence converges to f uniformly if for all x in the domain of f* and all infinite n, is infinitely close to .

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

<span class="mw-page-title-main">Cauchy sequence</span> Sequence of points that get progressively closer to each other

In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences.

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using limits rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Uniform continuity</span> Uniform restraint of the change in functions

In mathematics, a real function of real numbers is said to be uniformly continuous if there is a positive real number such that function values over any function domain interval of the size are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number , then there is a positive real number such that at any and in any function interval of the size .

<span class="mw-page-title-main">Hyperreal number</span> Element of a nonstandard model of the reals, which can be infinite or infinitesimal

In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number is said to be finite if, and only if, for some integer . is said to be infinitesimal if, and only if, for all positive integers . The term "hyper-real" was introduced by Edwin Hewitt in 1948.

<span class="mw-page-title-main">Infinitesimal</span> Extremely small quantity in calculus; thing so small that there is no way to measure it

In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-eth" item in a sequence.

In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function.

In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some such that for every we can find a point such that and . Therefore, no matter how close it gets to any fixed point, there are even closer points at which the function takes not-nearby values.

In nonstandard analysis, a branch of mathematics, overspill is a widely used proof technique. It is based on the fact that the set of standard natural numbers N is not an internal subset of the internal set *N of hypernatural numbers.

In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.

In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal , the unique real infinitely close to it, i.e. is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat, as well as Leibniz's Transcendental law of homogeneity.

In nonstandard analysis, a hyperintegern is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, ...) in the ultrapower construction of the hyperreals.

<i>Elementary Calculus: An Infinitesimal Approach</i>

Elementary Calculus: An Infinitesimal approach is a textbook by H. Jerome Keisler. The subtitle alludes to the infinitesimal numbers of the hyperreal number system of Abraham Robinson and is sometimes given as An approach using infinitesimals. The book is available freely online and is currently published by Dover.

In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Such fields will contain infinitesimal and infinitely large elements, suitably defined.

References

  1. Borovik, Alexandre; Katz, Mikhail G. (2011), "Who gave you the Cauchy--Weierstrass tale? The dual history of rigorous calculus", Foundations of Science , arXiv: 1108.2885 , doi:10.1007/s10699-011-9235-x .