# Uniform convergence

Last updated

In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions ${\displaystyle (f_{n})}$converges uniformly to a limiting function ${\displaystyle f}$ on a set ${\displaystyle E}$ if, given any arbitrarily small positive number ${\displaystyle \epsilon }$, a number ${\displaystyle N}$ can be found such that each of the functions ${\displaystyle f_{N},f_{N+1},f_{N+2},\ldots }$ differ from ${\displaystyle f}$ by no more than ${\displaystyle \epsilon }$at every point${\displaystyle x}$in${\displaystyle E}$. Described in an informal way, if ${\displaystyle f_{n}}$ converges to ${\displaystyle f}$ uniformly, then the rate at which ${\displaystyle f_{n}(x)}$ approaches ${\displaystyle f(x)}$ is "uniform" throughout its domain in the following sense: in order to guarantee that ${\displaystyle f_{n}(x)}$ falls within a certain distance ${\displaystyle \epsilon }$ of ${\displaystyle f(x)}$, we do not need to know the value of ${\displaystyle x\in E}$ in question — there can be found a single value of ${\displaystyle N=N(\epsilon )}$independent of ${\displaystyle x}$, such that choosing ${\displaystyle n\geq N}$ will ensure that ${\displaystyle f_{n}(x)}$ is within ${\displaystyle \epsilon }$ of ${\displaystyle f(x)}$for all ${\displaystyle x\in E}$. In contrast, pointwise convergence of ${\displaystyle f_{n}}$ to ${\displaystyle f}$ merely guarantees that for any ${\displaystyle x\in E}$ given in advance, we can find ${\displaystyle N=N(\epsilon ,x)}$ (${\displaystyle N}$ can depend on the value of ${\displaystyle x}$) so that, for that particular${\displaystyle x}$, ${\displaystyle f_{n}(x)}$ falls within ${\displaystyle \epsilon }$ of ${\displaystyle f(x)}$ whenever ${\displaystyle n\geq N}$.

## Contents

The difference between uniform convergence and pointwise convergence was not fully appreciated early in the history of calculus, leading to instances of faulty reasoning. The concept, which was first formalized by Karl Weierstrass, is important because several properties of the functions ${\displaystyle f_{n}}$, such as continuity, Riemann integrability, and, with additional hypotheses, differentiability, are transferred to the limit ${\displaystyle f}$ if the convergence is uniform, but not necessarily if the convergence is not uniform.

## History

In 1821 Augustin-Louis Cauchy published a proof that a convergent sum of continuous functions is always continuous, to which Niels Henrik Abel in 1826 found purported counterexamples in the context of Fourier series, arguing that Cauchy's proof had to be incorrect. Completely standard notions of convergence did not exist at the time, and Cauchy handled convergence using infinitesimal methods. When put into the modern language, what Cauchy proved is that a uniformly convergent sequence of continuous functions has a continuous limit. The failure of a merely pointwise-convergent limit of continuous functions to converge to a continuous function illustrates the importance of distinguishing between different types of convergence when handling sequences of functions. [1]

The term uniform convergence was probably first used by Christoph Gudermann, in an 1838 paper on elliptic functions, where he employed the phrase "convergence in a uniform way" when the "mode of convergence" of a series ${\displaystyle \textstyle {\sum _{n=1}^{\infty }f_{n}(x,\phi ,\psi )}}$ is independent of the variables ${\displaystyle \phi }$ and ${\displaystyle \psi .}$ While he thought it a "remarkable fact" when a series converged in this way, he did not give a formal definition, nor use the property in any of his proofs. [2]

Later Gudermann's pupil Karl Weierstrass, who attended his course on elliptic functions in 1839–1840, coined the term gleichmäßig konvergent (German : uniformly convergent) which he used in his 1841 paper Zur Theorie der Potenzreihen, published in 1894. Independently, similar concepts were articulated by Philipp Ludwig von Seidel [3] and George Gabriel Stokes. G. H. Hardy compares the three definitions in his paper "Sir George Stokes and the concept of uniform convergence" and remarks: "Weierstrass's discovery was the earliest, and he alone fully realized its far-reaching importance as one of the fundamental ideas of analysis."

Under the influence of Weierstrass and Bernhard Riemann this concept and related questions were intensely studied at the end of the 19th century by Hermann Hankel, Paul du Bois-Reymond, Ulisse Dini, Cesare Arzelà and others.

## Definition

We first define uniform convergence for real-valued functions, although the concept is readily generalized to functions mapping to metric spaces and, more generally, uniform spaces (see below).

Suppose ${\displaystyle E}$ is a set and ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ is a sequence of real-valued functions on it. We say the sequence ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ is uniformly convergent on ${\displaystyle E}$ with limit ${\displaystyle f:E\to \mathbb {R} }$ if for every ${\displaystyle \epsilon >0,}$ there exists a natural number ${\displaystyle N}$ such that for all ${\displaystyle n\geq N}$ and ${\displaystyle x\in E}$

${\displaystyle |f_{n}(x)-f(x)|<\epsilon .}$

The notation for uniform convergence of ${\displaystyle f_{n}}$ to ${\displaystyle f}$ is not quite standardized and different authors have used a variety of symbols, including (in roughly decreasing order of popularity):

${\displaystyle f_{n}\rightrightarrows f,\quad {\underset {n\to \infty }{\mathrm {unif\ lim} }}f_{n}=f,\quad f_{n}{\overset {\mathrm {unif.} }{\longrightarrow }}f.}$

Frequently, no special symbol is used, and authors simply write

${\displaystyle f_{n}\to f\quad \mathrm {uniformly} }$

to indicate that convergence is uniform. (In contrast, the expression ${\displaystyle f_{n}\to f}$ on ${\displaystyle E}$ without an adverb is taken to mean pointwise convergence on ${\displaystyle E}$: for all ${\displaystyle x\in E}$, ${\displaystyle f_{n}(x)\to f(x)}$ as ${\displaystyle n\to \infty }$.)

Since ${\displaystyle \mathbb {R} }$ is a complete metric space, the Cauchy criterion can be used to give an equivalent alternative formulation for uniform convergence: ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ converges uniformly on ${\displaystyle E}$ (in the previous sense) if and only if for every ${\displaystyle \epsilon >0}$, there exists a natural number ${\displaystyle N}$ such that

${\displaystyle x\in E,m,n\geq N\implies |f_{m}(x)-f_{n}(x)|<\epsilon }$.

In yet another equivalent formulation, if we define

${\displaystyle d_{n}=\sup _{x\in E}|f_{n}(x)-f(x)|,}$

then ${\displaystyle f_{n}}$ converges to ${\displaystyle f}$ uniformly if and only if ${\displaystyle d_{n}\to 0}$ as ${\displaystyle n\to \infty }$. Thus, we can characterize uniform convergence of ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ on ${\displaystyle E}$ as (simple) convergence of ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ in the function space ${\displaystyle \mathbb {R} ^{E}}$ with respect to the uniform metric (also called the supremum metric), defined by

${\displaystyle d(f,g)=\sup _{x\in E}|f(x)-g(x)|.}$

Symbolically,

${\displaystyle f_{n}\rightrightarrows f\iff \lim _{n\to \infty }d(f_{n},f)=0}$.

The sequence ${\displaystyle (f_{n})_{n\in \mathbb {N} }}$ is said to be locally uniformly convergent with limit ${\displaystyle f}$ if ${\displaystyle E}$ is a metric space and for every ${\displaystyle x\in E}$, there exists an ${\displaystyle r>0}$ such that ${\displaystyle (f_{n})}$ converges uniformly on ${\displaystyle B(x,r)\cap E.}$ It is clear that uniform convergence implies local uniform convergence, which implies pointwise convergence.

### Notes

Intuitively, a sequence of functions ${\displaystyle f_{n}}$ converges uniformly to ${\displaystyle f}$ if, given an arbitrarily small ${\displaystyle \epsilon >0}$, we can find an ${\displaystyle N\in \mathbb {N} }$ so that the functions ${\displaystyle f_{n}}$ with ${\displaystyle n>N}$ all fall within a "tube" of width ${\displaystyle 2\epsilon }$ centered around ${\displaystyle f}$ (i.e., between ${\displaystyle f(x)-\epsilon }$ and ${\displaystyle f(x)+\epsilon }$) for the entire domain of the function.

Note that interchanging the order of quantifiers in the definition of uniform convergence by moving "for all ${\displaystyle x\in E}$" in front of "there exists a natural number ${\displaystyle N}$" results in a definition of pointwise convergence of the sequence. To make this difference explicit, in the case of uniform convergence, ${\displaystyle N=N(\epsilon )}$ can only depend on ${\displaystyle \epsilon }$, and the choice of ${\displaystyle N}$ has to work for all ${\displaystyle x\in E}$, for a specific value of ${\displaystyle \epsilon }$ that is given. In contrast, in the case of pointwise convergence, ${\displaystyle N=N(\epsilon ,x)}$ may depend on both ${\displaystyle \epsilon }$ and ${\displaystyle x}$, and the choice of ${\displaystyle N}$ only has to work for the specific values of ${\displaystyle \epsilon }$ and ${\displaystyle x}$ that are given. Thus uniform convergence implies pointwise convergence, however the converse is not true, as the example in the section below illustrates.

### Generalizations

One may straightforwardly extend the concept to functions EM, where (M, d) is a metric space, by replacing ${\displaystyle |f_{n}(x)-f(x)|}$ with ${\displaystyle d(f_{n}(x),f(x))}$.

The most general setting is the uniform convergence of nets of functions EX, where X is a uniform space. We say that the net ${\displaystyle (f_{\alpha })}$converges uniformly with limit f : EX if and only if for every entourage V in X, there exists an ${\displaystyle \alpha _{0}}$, such that for every x in E and every ${\displaystyle \alpha \geq \alpha _{0}}$, ${\displaystyle (f_{\alpha }(x),f(x))}$ is in V. In this situation, uniform limit of continuous functions remains continuous.

### Definition in a hyperreal setting

Uniform convergence admits a simplified definition in a hyperreal setting. Thus, a sequence ${\displaystyle f_{n}}$ converges to f uniformly if for all x in the domain of ${\displaystyle f^{*}}$ and all infinite n, ${\displaystyle f_{n}^{*}(x)}$ is infinitely close to ${\displaystyle f^{*}(x)}$ (see microcontinuity for a similar definition of uniform continuity).

## Examples

Given a topological space X, we can equip the space of bounded real or complex-valued functions over X with the uniform norm topology, with the uniform metric defined by

${\displaystyle d(f,g)=\|f-g\|_{\infty }=\sup _{x\in X}|f(x)-g(x)|.}$

Then uniform convergence simply means convergence in the uniform norm topology:

${\displaystyle \lim _{n\to \infty }\|f_{n}-f\|_{\infty }=0}$.

The sequence of functions ${\displaystyle (f_{n})}$

${\displaystyle {\begin{cases}f_{n}:[0,1]\to [0,1]\\f_{n}(x)=x^{n}\end{cases}}}$

is a classic example of a sequence of functions that converges to a function ${\displaystyle f}$ pointwise but not uniformly. To show this, we first observe that the pointwise limit of ${\displaystyle (f_{n})}$ as ${\displaystyle n\to \infty }$ is the function ${\displaystyle f}$, given by

${\displaystyle f(x)=\lim _{n\to \infty }f_{n}(x)={\begin{cases}0,&x\in [0,1);\\1,&x=1.\end{cases}}}$

Pointwise convergence: Convergence is trivial for ${\displaystyle x=0}$ and ${\displaystyle x=1}$, since ${\displaystyle f_{n}(0)=f(0)=0}$ and ${\displaystyle f_{n}(1)=f(1)=1}$, for all ${\displaystyle n}$. For ${\displaystyle x\in (0,1)}$ and given ${\displaystyle \epsilon >0}$, we can ensure that ${\displaystyle |f_{n}(x)-f(x)|<\epsilon }$ whenever ${\displaystyle n\geq N}$ by choosing ${\displaystyle N=\lceil \log \epsilon /\log x\rceil }$ (here the upper square brackets indicate rounding up, see ceiling function). Hence, ${\displaystyle f_{n}\to f}$ pointwise for all ${\displaystyle x\in [0,1]}$. Note that the choice of ${\displaystyle N}$ depends on the value of ${\displaystyle \epsilon }$ and ${\displaystyle x}$. Moreover, for a fixed choice of ${\displaystyle \epsilon }$, ${\displaystyle N}$ (which cannot be defined to be smaller) grows without bound as ${\displaystyle x}$ approaches 1. These observations preclude the possibility of uniform convergence.

Non-uniformity of convergence: The convergence is not uniform, because we can find an ${\displaystyle \epsilon >0}$ so that no matter how large we choose ${\displaystyle N,}$ there will be values of ${\displaystyle x\in [0,1]}$ and ${\displaystyle n\geq N}$ such that ${\displaystyle |f_{n}(x)-f(x)|\geq \epsilon .}$ To see this, first observe that regardless of how large ${\displaystyle n}$ becomes, there is always an ${\displaystyle x_{0}\in [0,1)}$ such that ${\displaystyle f_{n}(x_{0})=1/2.}$ Thus, if we choose ${\displaystyle \epsilon =1/4,}$ we can never find an ${\displaystyle N}$ such that ${\displaystyle |f_{n}(x)-f(x)|<\epsilon }$ for all ${\displaystyle x\in [0,1]}$ and ${\displaystyle n\geq N}$. Explicitly, whatever candidate we choose for ${\displaystyle N}$, consider the value of ${\displaystyle f_{N}}$ at ${\displaystyle x_{0}=(1/2)^{1/N}}$. Since

${\displaystyle \left|f_{N}(x_{0})-f(x_{0})\right|=\left|\left[\left({\frac {1}{2}}\right)^{\frac {1}{N}}\right]^{N}-0\right|={\frac {1}{2}}>{\frac {1}{4}}=\epsilon ,}$

the candidate fails because we have found an example of an ${\displaystyle x\in [0,1]}$ that "escaped" our attempt to "confine" each ${\displaystyle f_{n}\ (n\geq N)}$ to within ${\displaystyle \epsilon }$ of ${\displaystyle f}$ for all ${\displaystyle x\in [0,1]}$. In fact, it is easy to see that

${\displaystyle \lim _{n\to \infty }\|f_{n}-f\|_{\infty }=1,}$

contrary to the requirement that ${\displaystyle \|f_{n}-f\|_{\infty }\to 0}$ if ${\displaystyle f_{n}\rightrightarrows f}$.

In this example one can easily see that pointwise convergence does not preserve differentiability or continuity. While each function of the sequence is smooth, that is to say that for all n, ${\displaystyle f_{n}\in C^{\infty }([0,1])}$, the limit ${\displaystyle \lim _{n\to \infty }f_{n}}$ is not even continuous.

### Exponential function

The series expansion of the exponential function can be shown to be uniformly convergent on any bounded subset ${\displaystyle S\subset \mathbb {C} }$ using the Weierstrass M-test.

Theorem (Weierstrass M-test).Let ${\displaystyle (f_{n})}$ be a sequence of functions ${\displaystyle f_{n}:E\to \mathbb {C} }$ and let ${\displaystyle M_{n}}$ be a sequence of positive real numbers such that ${\displaystyle |f_{n}(x)| for all ${\displaystyle x\in E}$ and ${\displaystyle n=1,2,3,\ldots }$ If ${\textstyle \sum _{n}M_{n}}$ converges, then ${\textstyle \sum _{n}f_{n}}$ converges uniformly on ${\displaystyle E}$.

The complex exponential function can be expressed as the series:

${\displaystyle \sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}.}$

Any bounded subset is a subset of some disc ${\displaystyle D_{R}}$ of radius ${\displaystyle R,}$ centered on the origin in the complex plane. The Weierstrass M-test requires us to find an upper bound ${\displaystyle M_{n}}$ on the terms of the series, with ${\displaystyle M_{n}}$ independent of the position in the disc:

${\displaystyle \left|{\frac {z^{n}}{n!}}\right|\leq M_{n},\forall z\in D_{R}.}$

To do this, we notice

${\displaystyle \left|{\frac {z^{n}}{n!}}\right|\leq {\frac {|z|^{n}}{n!}}\leq {\frac {R^{n}}{n!}}}$

and take ${\displaystyle M_{n}={\tfrac {R^{n}}{n!}}.}$

If ${\displaystyle \sum _{n=0}^{\infty }M_{n}}$ is convergent, then the M-test asserts that the original series is uniformly convergent.

The ratio test can be used here:

${\displaystyle \lim _{n\to \infty }{\frac {M_{n+1}}{M_{n}}}=\lim _{n\to \infty }{\frac {R^{n+1}}{R^{n}}}{\frac {n!}{(n+1)!}}=\lim _{n\to \infty }{\frac {R}{n+1}}=0}$

which means the series over ${\displaystyle M_{n}}$ is convergent. Thus the original series converges uniformly for all ${\displaystyle z\in D_{R},}$ and since ${\displaystyle S\subset D_{R}}$, the series is also uniformly convergent on ${\displaystyle S.}$

## Properties

• Every uniformly convergent sequence is locally uniformly convergent.
• Every locally uniformly convergent sequence is compactly convergent.
• For locally compact spaces local uniform convergence and compact convergence coincide.
• A sequence of continuous functions on metric spaces, with the image metric space being complete, is uniformly convergent if and only if it is uniformly Cauchy.
• If ${\displaystyle S}$ is a compact interval (or in general a compact topological space), and ${\displaystyle (f_{n})}$ is a monotone increasing sequence (meaning ${\displaystyle f_{n}(x)\leq f_{n+1}(x)}$ for all n and x) of continuous functions with a pointwise limit ${\displaystyle f}$ which is also continuous, then the convergence is necessarily uniform (Dini's theorem). Uniform convergence is also guaranteed if ${\displaystyle S}$ is a compact interval and ${\displaystyle (f_{n})}$ is an equicontinuous sequence that converges pointwise.

## Applications

### To continuity

If ${\displaystyle E}$ and ${\displaystyle M}$ are topological spaces, then it makes sense to talk about the continuity of the functions ${\displaystyle f_{n},f:E\to M}$. If we further assume that ${\displaystyle M}$ is a metric space, then (uniform) convergence of the ${\displaystyle f_{n}}$ to ${\displaystyle f}$ is also well defined. The following result states that continuity is preserved by uniform convergence:

Uniform limit theorem. Suppose ${\displaystyle E}$ is a topological space, ${\displaystyle M}$ is a metric space, and ${\displaystyle (f_{n})}$ is a sequence of continuous functions ${\displaystyle f_{n}:E\to M}$. If ${\displaystyle f_{n}\rightrightarrows f}$ on ${\displaystyle E}$, then ${\displaystyle f}$ is also continuous.

This theorem is proved by the "ε/3 trick", and is the archetypal example of this trick: to prove a given inequality (ε), one uses the definitions of continuity and uniform convergence to produce 3 inequalities (ε/3), and then combines them via the triangle inequality to produce the desired inequality.

This theorem is an important one in the history of real and Fourier analysis, since many 18th century mathematicians had the intuitive understanding that a sequence of continuous functions always converges to a continuous function. The image above shows a counterexample, and many discontinuous functions could, in fact, be written as a Fourier series of continuous functions. The erroneous claim that the pointwise limit of a sequence of continuous functions is continuous (originally stated in terms of convergent series of continuous functions) is infamously known as "Cauchy's wrong theorem". The uniform limit theorem shows that a stronger form of convergence, uniform convergence, is needed to ensure the preservation of continuity in the limit function.

More precisely, this theorem states that the uniform limit of uniformly continuous functions is uniformly continuous; for a locally compact space, continuity is equivalent to local uniform continuity, and thus the uniform limit of continuous functions is continuous.

### To differentiability

If ${\displaystyle S}$ is an interval and all the functions ${\displaystyle f_{n}}$ are differentiable and converge to a limit ${\displaystyle f}$, it is often desirable to determine the derivative function ${\displaystyle f'}$ by taking the limit of the sequence ${\displaystyle f'_{n}}$. This is however in general not possible: even if the convergence is uniform, the limit function need not be differentiable (not even if the sequence consists of everywhere-analytic functions, see Weierstrass function), and even if it is differentiable, the derivative of the limit function need not be equal to the limit of the derivatives. Consider for instance ${\displaystyle f_{n}(x)=n^{-1/2}{\sin(nx)}}$ with uniform limit ${\displaystyle f_{n}\rightrightarrows f\equiv 0}$. Clearly, ${\displaystyle f'}$ is also identically zero. However, the derivatives of the sequence of functions are given by ${\displaystyle f'_{n}(x)=n^{1/2}\cos nx,}$ and the sequence ${\displaystyle f'_{n}}$ does not converge to ${\displaystyle f',}$ or even to any function at all. In order to ensure a connection between the limit of a sequence of differentiable functions and the limit of the sequence of derivatives, the uniform convergence of the sequence of derivatives plus the convergence of the sequence of functions at at least one point is required: [4]

If ${\displaystyle (f_{n})}$ is a sequence of differentiable functions on ${\displaystyle [a,b]}$ such that ${\displaystyle \lim _{n\to \infty }f_{n}(x_{0})}$ exists (and is finite) for some ${\displaystyle x_{0}\in [a,b]}$ and the sequence ${\displaystyle (f'_{n})}$ converges uniformly on ${\displaystyle [a,b]}$, then ${\displaystyle f_{n}}$ converges uniformly to a function ${\displaystyle f}$ on ${\displaystyle [a,b]}$, and ${\displaystyle f'(x)=\lim _{n\to \infty }f'_{n}(x)}$ for ${\displaystyle x\in [a,b]}$.

### To integrability

Similarly, one often wants to exchange integrals and limit processes. For the Riemann integral, this can be done if uniform convergence is assumed:

If ${\displaystyle (f_{n})_{n=1}^{\infty }}$ is a sequence of Riemann integrable functions defined on a compact interval ${\displaystyle I}$ which uniformly converge with limit ${\displaystyle f}$, then ${\displaystyle f}$ is Riemann integrable and its integral can be computed as the limit of the integrals of the ${\displaystyle f_{n}}$:
${\displaystyle \int _{I}f=\lim _{n\to \infty }\int _{I}f_{n}.}$

In fact, for a uniformly convergent family of bounded functions on an interval, the upper and lower Riemann integrals converge to the upper and lower Riemann integrals of the limit function. This follows because, for n sufficiently large, the graph of ${\displaystyle f_{n}}$ is within ε of the graph of f, and so the upper sum and lower sum of ${\displaystyle f_{n}}$ are each within ${\displaystyle \varepsilon |I|}$ of the value of the upper and lower sums of ${\displaystyle f}$, respectively.

Much stronger theorems in this respect, which require not much more than pointwise convergence, can be obtained if one abandons the Riemann integral and uses the Lebesgue integral instead.

### To analyticity

Using Morera's Theorem, one can show that if a sequence of analytic functions converges uniformly in a region S of the complex plane, then the limit is analytic in S. This example demonstrates that complex functions are more well-behaved than real functions, since the uniform limit of analytic functions on a real interval need not even be differentiable (see Weierstrass function).

### To series

We say that ${\displaystyle \textstyle \sum _{n=1}^{\infty }f_{n}}$ converges:

1. pointwise on E if and only if the sequence of partial sums ${\displaystyle s_{n}(x)=\sum _{j=1}^{n}f_{j}(x)}$ converges for every ${\displaystyle x\in E}$.
2. uniformly on E if and only if sn converges uniformly as ${\displaystyle n\to \infty }$.
3. absolutely on E if and only if ${\displaystyle \textstyle \sum _{n=1}^{\infty }|f_{n}|}$ converges for every ${\displaystyle x\in E}$.

With this definition comes the following result:

Let x0 be contained in the set E and each fn be continuous at x0. If ${\displaystyle \textstyle f=\sum _{n=1}^{\infty }f_{n}}$ converges uniformly on E then f is continuous at x0 in E. Suppose that ${\displaystyle E=[a,b]}$ and each fn is integrable on E. If ${\displaystyle \textstyle \sum _{n=1}^{\infty }f_{n}}$ converges uniformly on E then f is integrable on E and the series of integrals of fn is equal to integral of the series of fn.

## Almost uniform convergence

If the domain of the functions is a measure space E then the related notion of almost uniform convergence can be defined. We say a sequence of functions ${\displaystyle (f_{n})}$ converges almost uniformly on E if for every ${\displaystyle \delta >0}$ there exists a measurable set ${\displaystyle E_{\delta }}$ with measure less than ${\displaystyle \delta }$ such that the sequence of functions ${\displaystyle (f_{n})}$ converges uniformly on ${\displaystyle E\setminus E_{\delta }}$. In other words, almost uniform convergence means there are sets of arbitrarily small measure for which the sequence of functions converges uniformly on their complement.

Note that almost uniform convergence of a sequence does not mean that the sequence converges uniformly almost everywhere as might be inferred from the name. However, Egorov's theorem does guarantee that on a finite measure space, a sequence of functions that converges almost everywhere also converges almost uniformly on the same set.

Almost uniform convergence implies almost everywhere convergence and convergence in measure.

## Notes

1. Sørensen, Henrik Kragh (2005). "Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem". Historia Mathematica. 32 (4): 453–480. doi:10.1016/j.hm.2004.11.010.
2. Jahnke, Hans Niels (2003). "6.7 The Foundation of Analysis in the 19th Century: Weierstrass". A history of analysis. AMS Bookstore. ISBN   978-0-8218-2623-2, p. 184.CS1 maint: postscript (link)
3. Lakatos, Imre (1976). Proofs and Refutations. Cambridge University Press. pp.  141. ISBN   978-0-521-21078-2.
4. Rudin, Walter (1976). Principles of Mathematical Analysis 3rd edition, Theorem 7.17. McGraw-Hill: New York.

## Related Research Articles

In mathematics, a continuous function is a function that does not have any abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its output can be assured by restricting to sufficiently small changes in its input. If not continuous, a function is said to be discontinuous. Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, during which attempts such as the epsilon–delta definition were made to formalize it.

In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

In mathematics, real analysis is the branch of mathematical analysis that studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied. The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

In mathematics, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel.

In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input.

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In calculus, the squeeze theorem, also known as the pinching theorem, the sandwich theorem, the sandwich rule, the police theorem, the between theorem and sometimes the squeeze lemma, is a theorem regarding the limit of a function. In Italy, the theorem is also known as theorem of carabinieri.

In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared.

In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted

In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian physicist and geometer, who published independent proofs respectively in 1910 and 1911.

Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.

In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

In mathematics, the uniform limit theorem states that the uniform limit of any sequence of continuous functions is continuous.

In functional analysis, the Fréchet–Kolmogorov theorem gives a necessary and sufficient condition for a set of functions to be relatively compact in an Lp space. It can be thought of as an Lp version of the Arzelà–Ascoli theorem, from which it can be deduced. The theorem is named after Maurice René Fréchet and Andrey Kolmogorov.