Laurent series

Last updated
A Laurent series is defined with respect to a particular point
c
{\displaystyle c}
and a path of integration g. The path of integration must lie in an annulus, indicated here by the red color, inside which
f
(
z
)
{\displaystyle f(z)}
is holomorphic (analytic). Laurent series.svg
A Laurent series is defined with respect to a particular point and a path of integration γ. The path of integration must lie in an annulus, indicated here by the red color, inside which is holomorphic (analytic).

In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass had previously described it in a paper written in 1841 but not published until 1894. [1]

Contents

Definition

The Laurent series for a complex function about a point is given by where and are constants, with defined by a contour integral that generalizes Cauchy's integral formula:

The path of integration is counterclockwise around a Jordan curve enclosing and lying in an annulus in which is holomorphic (analytic). The expansion for will then be valid anywhere inside the annulus. The annulus is shown in red in the figure on the right, along with an example of a suitable path of integration labeled . If we take to be a circle , where , this just amounts to computing the complex Fourier coefficients of the restriction of to . The fact that these integrals are unchanged by a deformation of the contour is an immediate consequence of Green's theorem.

One may also obtain the Laurent series for a complex function at . However, this is the same as when (see the example below).

In practice, the above integral formula may not offer the most practical method for computing the coefficients for a given function ; instead, one often pieces together the Laurent series by combining known Taylor expansions. Because the Laurent expansion of a function is unique whenever it exists, any expression of this form that equals the given function in some annulus must actually be the Laurent expansion of .

Convergent Laurent series

e and Laurent approximations: see text for key. As the negative degree of the Laurent series rises, it approaches the correct function. Expinvsqlau SVG.svg
e and Laurent approximations: see text for key. As the negative degree of the Laurent series rises, it approaches the correct function.
e and its Laurent approximations with the negative degree rising. The neighborhood around the zero singularity can never be approximated. Expinvsqlau GIF.gif
e and its Laurent approximations with the negative degree rising. The neighborhood around the zero singularity can never be approximated.

Laurent series with complex coefficients are an important tool in complex analysis, especially to investigate the behavior of functions near singularities.

Consider for instance the function with . As a real function, it is infinitely differentiable everywhere; as a complex function however it is not differentiable at . By replacing with in the power series for the exponential function, we obtain its Laurent series which converges and is equal to for all complex numbers except at the singularity . The graph opposite shows in black and its Laurent approximations for = 1, 2, 3, 4, 5, 6, 7 and 50. As , the approximation becomes exact for all (complex) numbers except at the singularity .

More generally, Laurent series can be used to express holomorphic functions defined on an annulus, much as power series are used to express holomorphic functions defined on a disc.

Suppose is a given Laurent series with complex coefficients and a complex center . Then there exists a unique inner radius and outer radius such that:

It is possible that may be zero or may be infinite; at the other extreme, it's not necessarily true that is less than . These radii can be computed as follows:

We take to be infinite when this latter lim sup is zero.

Conversely, if we start with an annulus of the form and a holomorphic function defined on , then there always exists a unique Laurent series with center which converges (at least) on and represents the function .

As an example, consider the following rational function, along with its partial fraction expansion:

This function has singularities at and , where the denominator of the expression is zero and the expression is therefore undefined. A Taylor series about (which yields a power series) will only converge in a disc of radius 1, since it "hits" the singularity at 1.

However, there are three possible Laurent expansions about 0, depending on the radius of :

The case ; i.e., a holomorphic function which may be undefined at a single point , is especially important. The coefficient of the Laurent expansion of such a function is called the residue of at the singularity ; it plays a prominent role in the residue theorem. For an example of this, consider

This function is holomorphic everywhere except at .

To determine the Laurent expansion about , we use our knowledge of the Taylor series of the exponential function:

We find that the residue is 2.

One example for expanding about :

Uniqueness

Suppose a function holomorphic on the annulus has two Laurent series:

Multiply both sides by , where k is an arbitrary integer, and integrate on a path γ inside the annulus,

The series converges uniformly on , where ε is a positive number small enough for γ to be contained in the constricted closed annulus, so the integration and summation can be interchanged. Substituting the identity into the summation yields

Hence the Laurent series is unique.

Laurent polynomials

A Laurent polynomial is a Laurent series in which only finitely many coefficients are non-zero. Laurent polynomials differ from ordinary polynomials in that they may have terms of negative degree.

Principal part

The principal part of a Laurent series is the series of terms with negative degree, that is

If the principal part of is a finite sum, then has a pole at of order equal to (negative) the degree of the highest term; on the other hand, if has an essential singularity at , the principal part is an infinite sum (meaning it has infinitely many non-zero terms).

If the inner radius of convergence of the Laurent series for is 0, then has an essential singularity at if and only if the principal part is an infinite sum, and has a pole otherwise.

If the inner radius of convergence is positive, may have infinitely many negative terms but still be regular at , as in the example above, in which case it is represented by a different Laurent series in a disk about .

Laurent series with only finitely many negative terms are well-behaved—they are a power series divided by , and can be analyzed similarly—while Laurent series with infinitely many negative terms have complicated behavior on the inner circle of convergence.

Multiplication and sum

Laurent series cannot in general be multiplied. Algebraically, the expression for the terms of the product may involve infinite sums which need not converge (one cannot take the convolution of integer sequences). Geometrically, the two Laurent series may have non-overlapping annuli of convergence.

Two Laurent series with only finitely many negative terms can be multiplied: algebraically, the sums are all finite; geometrically, these have poles at , and inner radius of convergence 0, so they both converge on an overlapping annulus.

Thus when defining formal Laurent series, one requires Laurent series with only finitely many negative terms.

Similarly, the sum of two convergent Laurent series need not converge, though it is always defined formally, but the sum of two bounded below Laurent series (or any Laurent series on a punctured disk) has a non-empty annulus of convergence.

Also, for a field , by the sum and multiplication defined above, formal Laurent series would form a field which is also the field of fractions of the ring of formal power series.

See also

Related Research Articles

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, a series is, roughly speaking, an addition of infinitely many quantities, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.

In mathematics, a power series is an infinite series of the form where an represents the coefficient of the nth term and c is a constant. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function.

<span class="mw-page-title-main">Analytic function</span> Type of function in mathematics

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

<span class="mw-page-title-main">Residue (complex analysis)</span> Attribute of a mathematical function

In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. Residues can be computed quite easily and, once known, allow the determination of general contour integrals via the residue theorem.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

<span class="mw-page-title-main">Series expansion</span> Expression of a function as an infinite sum of simpler functions

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators.

In mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root.

In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.

In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When is a rational function, this reduces to the usual method of partial fractions.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that

References

  1. Roy, Ranjan (2012), "§1.5 Appendix: Historical Notes by Ranjan Roy", Complex Analysis: In the Spirit of Lipman Bers, by Rodríguez, Rubí E.; Kra, Irwin; Gilman, Jane P. (2nd ed.), Springer, p. 12, doi:10.1007/978-1-4419-7323-8_1, ISBN   978-1-4419-7322-1
    Weierstrass, Karl (1841), "Darstellung einer analytischen Function einer complexen Veränderlichen, deren absoluter Betrag zwischen zwei gegebenen Grenzen liegt" [Representation of an analytical function of a complex variable, whose absolute value lies between two given limits], Mathematische Werke (in German), vol. 1, Berlin: Mayer & Müller (published 1894), pp. 51–66