Complete sequence

Last updated

In mathematics, a sequence of natural numbers is called a complete sequence if every positive integer can be expressed as a sum of values in the sequence, using each value at most once.

Contents

For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 1001012 = 1 + 4 + 32). This sequence is minimal, since no value can be removed from it without making some natural numbers impossible to represent. Simple examples of sequences that are not complete include the even numbers, since adding even numbers produces only even numbers—no odd number can be formed.

Conditions for completeness

Without loss of generality, assume the sequence an is in non-decreasing order, and define the partial sums of an as:

.

Then the conditions

are both necessary and sufficient for an to be a complete sequence. [1] [2]

A corollary to the above states that

are sufficient for an to be a complete sequence. [1]

However there are complete sequences that do not satisfy this corollary, for example (sequence A203074 in the OEIS ), consisting of the number 1 and the first prime after each power of 2.

Other complete sequences

The complete sequences include:

Applications

Just as the powers of two form a complete sequence due to the binary numeral system, in fact any complete sequence can be used to encode integers as bit strings. The rightmost bit position is assigned to the first, smallest member of the sequence; the next rightmost to the next member; and so on. Bits set to 1 are included in the sum. These representations may not be unique.

Fibonacci coding

For example, in the Fibonacci arithmetic system, based on the Fibonacci sequence, the number 17 can be encoded in six different ways:

110111 (F6 + F5 + F3 + F2 + F1 = 8 + 5 + 2 + 1 + 1 = 17, maximal form)
111001 (F6 + F5 + F4 + F1 = 8 + 5 + 3 + 1 = 17)
111010 (F6 + F5 + F4 + F2 = 8 + 5 + 3 + 1 = 17)
1000111 (F7 + F3 + F2 + F1 = 13 + 2 + 1 + 1 = 17)
1001001 (F7 + F4 + F1 = 13 + 3 + 1 = 17)
1001010 (F7 + F4 + F2 = 13 + 3 + 1 = 17, minimal form, as used in Fibonacci coding)

The maximal form above will always use F1 and will always have a trailing one. The full coding without the trailing one can be found at (sequence A104326 in the OEIS ). By dropping the trailing one, the coding for 17 above occurs as the 16th term of A104326. The minimal form will never use F1 and will always have a trailing zero. The full coding without the trailing zero can be found at (sequence A014417 in the OEIS ). This coding is known as the Zeckendorf representation.

In this numeral system, any substring "100" can be replaced by "011" and vice versa due to the definition of the Fibonacci numbers. [5] Continual application of these rules will translate form the maximal to the minimal, and vice versa. The fact that any number (greater than 1) can be represented with a terminal 0 means that it is always possible to add 1, and given that, for 1 and 2 can be represented in Fibonacci coding, completeness follows by induction.

See also

Related Research Articles

<span class="mw-page-title-main">Fibonacci number</span> Integer in the infinite Fibonacci sequence

In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the first few values in the sequence are:

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end.

Golden ratio base is a non-integer positional numeral system that uses the golden ratio as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" – this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φ (φ1) + 1 (φ0) = φ2. For instance, 11φ = 100φ.

<span class="mw-page-title-main">Arithmetic coding</span> Form of entropy encoding used in data compression

Arithmetic coding (AC) is a form of entropy encoding used in lossless data compression. Normally, a string of characters is represented using a fixed number of bits per character, as in the ASCII code. When a string is converted to arithmetic encoding, frequently used characters will be stored with fewer bits and not-so-frequently occurring characters will be stored with more bits, resulting in fewer bits used in total. Arithmetic coding differs from other forms of entropy encoding, such as Huffman coding, in that rather than separating the input into component symbols and replacing each with a code, arithmetic coding encodes the entire message into a single number, an arbitrary-precision fraction q, where 0.0 ≤ q < 1.0. It represents the current information as a range, defined by two numbers. A recent family of entropy coders called asymmetric numeral systems allows for faster implementations thanks to directly operating on a single natural number representing the current information.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

<span class="mw-page-title-main">Power of two</span> Two raised to an integer power

A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.

73 (seventy-three) is the natural number following 72 and preceding 74. In English, it is the smallest natural number with twelve letters in its spelled out name.

<span class="mw-page-title-main">Lucas number</span> Infinite integer series where the next number is the sum of the two preceding it

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

109 is the natural number following 108 and preceding 110.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

127 is the natural number following 126 and preceding 128. It is also a prime number.

600 is the natural number following 599 and preceding 601.

<span class="mw-page-title-main">Zeckendorf's theorem</span> On the unique representation of integers as sums of non-consecutive Fibonacci numbers

In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers.

In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number would be .

Non-standard positional numeral systems here designates numeral systems that may loosely be described as positional systems, but that do not entirely comply with the following description of standard positional systems:

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary or complex number.

In mathematics, the fibbinary numbers are the numbers whose binary representation does not contain two consecutive ones. That is, they are sums of distinct and non-consecutive powers of two.

References

  1. 1 2 3 4 Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985, pp.123-128.
  2. Brown, J. L. (1961). "Note on Complete Sequences of Integers". The American Mathematical Monthly. 68 (6): 557–560. doi:10.2307/2311150. JSTOR   2311150.
  3. S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159–167.
  4. Srinivasan, A. K. (1948), "Practical numbers" (PDF), Current Science , 17: 179–180, MR   0027799 .
  5. Stakhov, Alexey. "The main operations of the Fibonacci arithmetic". Archived from the original on January 24, 2013. Retrieved September 11, 2016., Museum of Harmony and Golden Section. Originally accessed: 27 July 2010.