Integer sequence

Last updated
Beginning of the Fibonacci sequence on a building in Gothenburg Goteborg ciag Fibonacciego.jpg
Beginning of the Fibonacci sequence on a building in Gothenburg

In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.

Contents

An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description (sequence A000045 in the OEIS ). The sequence 0, 3, 8, 15, ... is formed according to the formula n2  1 for the nth term: an explicit definition.

Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 in the OEIS ), even though we do not have a formula for the nth perfect number.

Computable and definable sequences

An integer sequence is a computable sequence if there exists an algorithm which, given n, calculates an, for all n> 0. The set of computable integer sequences is countable. The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.

Although some integer sequences have definitions, there is no systematic way to define what it means for an integer sequence to be definable in the universe or in any absolute (model independent) sense.

Suppose the set M is a transitive model of ZFC set theory. The transitivity of M implies that the integers and integer sequences inside M are actually integers and sequences of integers. An integer sequence is a definable sequence relative to M if there exists some formula P(x) in the language of set theory, with one free variable and no parameters, which is true in M for that integer sequence and false in M for all other integer sequences. In each such M, there are definable integer sequences that are not computable, such as sequences that encode the Turing jumps of computable sets.

For some transitive models M of ZFC, every sequence of integers in M is definable relative to M; for others, only some integer sequences are (Hamkins et al. 2013). There is no systematic way to define in M itself the set of sequences definable relative to M and that set may not even exist in some such M. Similarly, the map from the set of formulas that define integer sequences in M to the integer sequences they define is not definable in M and may not exist in M. However, in any model that does possess such a definability map, some integer sequences in the model will not be definable relative to the model (Hamkins et al. 2013).

If M contains all integer sequences, then the set of integer sequences definable in M will exist in M and be countable and countable in M.

Complete sequences

A sequence of positive integers is called a complete sequence if every positive integer can be expressed as a sum of values in the sequence, using each value at most once.

Examples

Integer sequences that have their own name include:

See also

Related Research Articles

<span class="mw-page-title-main">Definable real number</span>

Informally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, , can be defined as the unique positive solution to the equation , and it can be constructed with a compass and straightedge.

<span class="mw-page-title-main">Fibonacci sequence</span> Numbers obtained by adding the two previous ones

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the first few values in the sequence are:

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

In logic, Richard's paradox is a semantical antinomy of set theory and natural language first described by the French mathematician Jules Richard in 1905. The paradox is ordinarily used to motivate the importance of distinguishing carefully between mathematics and metamathematics.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.

In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation , where the signs + or − are chosen at random with equal probability , independently for different . By a theorem of Harry Kesten and Hillel Furstenberg, random recurrent sequences of this kind grow at a certain exponential rate, but it is difficult to compute the rate explicitly. In 1999, Divakar Viswanath showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943..., a mathematical constant that was later named Viswanath's constant.

Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.

In mathematical logic, an arithmetical set is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".

In mathematics, a primefree sequence is a sequence of integers that does not contain any prime numbers. More specifically, it usually means a sequence defined by the same recurrence relation as the Fibonacci numbers, but with different initial conditions causing all members of the sequence to be composite numbers that do not all have a common divisor. To put it algebraically, a sequence of this type is defined by an appropriate choice of two composite numbers a1 and a2, such that the greatest common divisor is equal to 1, and such that for there are no primes in the sequence of numbers calculated from the formula

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

In mathematical logic, a formula is said to be absolute to some class of structures, if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form.

In mathematics, the Perrin numbers are defined by the recurrence relation

This is a glossary of set theory.

<span class="mw-page-title-main">Joel David Hamkins</span> American mathematician

Joel David Hamkins is an American mathematician and philosopher who is O'Hara Professor of Philosophy and Mathematics at the University of Notre Dame. He has made contributions in mathematical and philosophical logic, set theory and philosophy of set theory, in computability theory, and in group theory.

In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. For instance, Minkowski's question-mark function produces an isomorphism between the numerical ordering of the rational numbers and the numerical ordering of the dyadic rationals.

References