Weird number

Last updated
Euler diagram of numbers under 100:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Abundant
Primitive abundant
Highly abundant
Superabundant and highly composite
Colossally abundant and superior highly composite
Weird
Perfect
Composite
Deficient Euler diagram numbers with many divisors.svg
Euler diagram of numbers under 100:
   Abundant
  Weird
   Perfect
   Composite
   Deficient

In number theory, a weird number is a natural number that is abundant but not semiperfect. [1] [2] In other words, the sum of the proper divisors (divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself.

Contents

Examples

The smallest weird number is 70. Its proper divisors are 1, 2, 5, 7, 10, 14, and 35; these sum to 74, but no subset of these sums to 70. The number 12, for example, is abundant but not weird, because the proper divisors of 12 are 1, 2, 3, 4, and 6, which sum to 16; but 2 + 4 + 6 = 12.

The first few weird numbers are

70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, ... (sequence A006037 in the OEIS ).

Properties

Unsolved problem in mathematics:
Are there any odd weird numbers?

Infinitely many weird numbers exist. [3] For example, 70p is weird for all primes p ≥ 149. In fact, the set of weird numbers has positive asymptotic density. [4]

It is not known if any odd weird numbers exist. If so, they must be greater than 1021. [5]

Sidney Kravitz has shown that for k a positive integer, Q a prime exceeding 2k, and

also prime and greater than 2k, then

is a weird number. [6] With this formula, he found the large weird number

Primitive weird numbers

A property of weird numbers is that if n is weird, and p is a prime greater than the sum of divisors σ(n), then pn is also weird. [4] This leads to the definition of primitive weird numbers: weird numbers that are not a multiple of other weird numbers (sequence A002975 in the OEIS ). Among the 1765 weird numbers less than one million, there are 24 primitive weird numbers. The construction of Kravitz yields primitive weird numbers, since all weird numbers of the form are primitive, but the existence of infinitely many k and Q which yield a prime R is not guaranteed. It is conjectured that there exist infinitely many primitive weird numbers, and Melfi has shown that the infinitude of primitive weird numbers is a consequence of Cramér's conjecture. [7] Primitive weird numbers with as many as 16 prime factors and 14712 digits have been found. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

A highly composite number is a positive integer that has more divisors than all smaller positive integers. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

<span class="mw-page-title-main">Multiply perfect number</span> Number whose divisors add to a multiple of that number

In mathematics, a multiply perfect number is a generalization of a perfect number.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Semiperfect number</span> Number equal to the sum of some of its divisors

In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number.

<span class="mw-page-title-main">Almost perfect number</span> Numbers whose sum of divisors is twice the number minus 1

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

104 is the natural number following 103 and preceding 105.

A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. Some perfect numbers are not unitary perfect numbers, and some unitary perfect numbers are not ordinary perfect numbers.

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

<span class="mw-page-title-main">Giuseppe Melfi</span> Italo-Swiss mathematician

Giuseppe Melfi is an Italo-Swiss mathematician who works on practical numbers and modular forms.

A Fibonacci prime is a Fibonacci number that is prime, a type of integer sequence prime.

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.

1728 is the natural number following 1727 and preceding 1729. It is a dozen gross, or one great gross. It is also the number of cubic inches in a cubic foot.

<span class="mw-page-title-main">Sylvester's sequence</span> Doubly exponential integer sequence

In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are

<span class="mw-page-title-main">Primary pseudoperfect number</span> Type of number

In mathematics, and particularly in number theory, N is a primary pseudoperfect number if it satisfies the Egyptian fraction equation

<span class="mw-page-title-main">Primitive abundant number</span> Abundant number whose proper divisors are all deficient numbers

In mathematics a primitive abundant number is an abundant number whose proper divisors are all deficient numbers.

References

  1. Benkoski, Stan (August–September 1972). "E2308 (in Problems and Solutions)". The American Mathematical Monthly. 79 (7): 774. doi:10.2307/2316276. JSTOR   2316276.
  2. Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer-Verlag. ISBN   0-387-20860-7. OCLC   54611248. Section B2.
  3. Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. pp. 113–114. ISBN   1-4020-4215-9. Zbl   1151.11300.
  4. 1 2 Benkoski, Stan; Erdős, Paul (April 1974). "On Weird and Pseudoperfect Numbers". Mathematics of Computation . 28 (126): 617–623. doi: 10.2307/2005938 . JSTOR   2005938. MR   0347726. Zbl   0279.10005.
  5. Sloane, N. J. A. (ed.). "SequenceA006037(Weird numbers: abundant (A005101) but not pseudoperfect (A005835))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. -- comments concerning odd weird numbers
  6. Kravitz, Sidney (1976). "A search for large weird numbers". Journal of Recreational Mathematics. 9 (2). Baywood Publishing: 82–85. Zbl   0365.10003.
  7. Melfi, Giuseppe (2015). "On the conditional infiniteness of primitive weird numbers". Journal of Number Theory. 147. Elsevier: 508–514. doi:10.1016/j.jnt.2014.07.024.
  8. Amato, Gianluca; Hasler, Maximilian; Melfi, Giuseppe; Parton, Maurizio (2019). "Primitive abundant and weird numbers with many prime factors". Journal of Number Theory. 201. Elsevier: 436–459. arXiv: 1802.07178 . doi:10.1016/j.jnt.2019.02.027. S2CID   119136924.