Fundamental theorem of arithmetic

Last updated
In Disquisitiones Arithmeticae (1801) Gauss proved the unique factorization theorem and used it to prove the law of quadratic reciprocity. Disqvisitiones-800.jpg
In Disquisitiones Arithmeticae (1801) Gauss proved the unique factorization theorem and used it to prove the law of quadratic reciprocity.

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

Contents

The theorem says two things about this example: first, that 1200 can be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.

The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, ).

This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example,

The theorem generalizes to other algebraic structures that are called unique factorization domains and include principal ideal domains, Euclidean domains, and polynomial rings over a field. However, the theorem does not hold for algebraic integers. [6] This failure of unique factorization is one of the reasons for the difficulty of the proof of Fermat's Last Theorem. The implicit use of unique factorization in rings of algebraic integers is behind the error of many of the numerous false proofs that have been written during the 358 years between Fermat's statement and Wiles's proof.

History

The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements .

If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.

Euclid, Elements Book VII, Proposition 30

(In modern terminology: if a prime p divides the product ab, then p divides either a or b or both.) Proposition 30 is referred to as Euclid's lemma, and it is the key in the proof of the fundamental theorem of arithmetic.

Any composite number is measured by some prime number.

Euclid, Elements Book VII, Proposition 31

(In modern terminology: every integer greater than one is divided evenly by some prime number.) Proposition 31 is proved directly by infinite descent.

Any number either is prime or is measured by some prime number.

Euclid, Elements Book VII, Proposition 32

Proposition 32 is derived from proposition 31, and proves that the decomposition is possible.

If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it.

Euclid, Elements Book IX, Proposition 14

(In modern terminology: a least common multiple of several prime numbers is not a multiple of any other prime number.) Book IX, proposition 14 is derived from Book VII, proposition 30, and proves partially that the decomposition is unique – a point critically noted by André Weil. [7] Indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case.

While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [8] and stated for the first time the fundamental theorem of arithmetic. [9]

Article 16 of Gauss's Disquisitiones Arithmeticae is an early modern statement and proof employing modular arithmetic. [1]

Applications

Canonical representation of a positive integer

Every positive integer n > 1 can be represented in exactly one way as a product of prime powers

where p1 < p2 < ... < pk are primes and the ni are positive integers. This representation is commonly extended to all positive integers, including 1, by the convention that the empty product is equal to 1 (the empty product corresponds to k = 0).

This representation is called the canonical representation [10] of n, or the standard form [11] [12] of n. For example,

999 = 33×37,
1000 = 23×53,
1001 = 7×11×13.

Factors p0 = 1 may be inserted without changing the value of n (for example, 1000 = 23×30×53). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as

where a finite number of the ni are positive integers, and the others are zero.

Allowing negative exponents provides a canonical form for positive rational numbers.

Arithmetic operations

The canonical representations of the product, greatest common divisor (GCD), and least common multiple (LCM) of two numbers a and b can be expressed simply in terms of the canonical representations of a and b themselves:

However, integer factorization, especially of large numbers, is much more difficult than computing products, GCDs, or LCMs. So these formulas have limited use in practice.

Arithmetic functions

Many arithmetic functions are defined using the canonical representation. In particular, the values of additive and multiplicative functions are determined by their values on the powers of prime numbers.

Proof

The proof uses Euclid's lemma (Elements VII, 30): If a prime divides the product of two integers, then it must divide at least one of these integers.

Existence

It must be shown that every integer greater than 1 is either prime or a product of primes. First, 2 is prime. Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < ab < n. By the induction hypothesis, a = p1p2 ⋅⋅⋅ pj and b = q1q2 ⋅⋅⋅ qk are products of primes. But then n = a b = p1p2 ⋅⋅⋅ pjq1q2 ⋅⋅⋅ qk is a product of primes.

Uniqueness

Suppose, to the contrary, there is an integer that has two distinct prime factorizations. Let n be the least such integer and write n = p1p2 ... pj = q1q2 ... qk, where each pi and qi is prime. We see that p1 divides q1q2 ... qk, so p1 divides some qi by Euclid's lemma. Without loss of generality, say p1 divides q1. Since p1 and q1 are both prime, it follows that p1 = q1. Returning to our factorizations of n, we may cancel these two factors to conclude that p2 ... pj = q2 ... qk. We now have two distinct prime factorizations of some integer strictly smaller than n, which contradicts the minimality of n.

Uniqueness without Euclid's lemma

The fundamental theorem of arithmetic can also be proved without using Euclid's lemma. [13] The proof that follows is inspired by Euclid's original version of the Euclidean algorithm.

Assume that is the smallest positive integer which is the product of prime numbers in two different ways. Incidentally, this implies that , if it exists, must be a composite number greater than . Now, say

Every must be distinct from every Otherwise, if say then there would exist some positive integer that is smaller than s and has two distinct prime factorizations. One may also suppose that by exchanging the two factorizations, if needed.

Setting and one has Also, since one has It then follows that

As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q, being smaller than s, must have a unique prime factorization, and differs from every The former case is also impossible, as, if is a divisor of it must be also a divisor of which is impossible as and are distinct primes.

Therefore, there cannot exist a smallest integer with more than a single distinct prime factorization. Every positive integer must either be a prime number itself, which would factor uniquely, or a composite that also factors uniquely into primes, or in the case of the integer , not factor into any prime.

Generalizations

The first generalization of the theorem is found in Gauss's second monograph (1832) on biquadratic reciprocity. This paper introduced what is now called the ring of Gaussian integers, the set of all complex numbers a + bi where a and b are integers. It is now denoted by He showed that this ring has the four units ±1 and ±i, that the non-zero, non-unit numbers fall into two classes, primes and composites, and that (except for order), the composites have unique factorization as a product of primes (up to the order and multiplication by units). [14]

Similarly, in 1844 while working on cubic reciprocity, Eisenstein introduced the ring , where   is a cube root of unity. This is the ring of Eisenstein integers, and he proved it has the six units and that it has unique factorization.

However, it was also discovered that unique factorization does not always hold. An example is given by . In this ring one has [15]

Examples like this caused the notion of "prime" to be modified. In it can be proven that if any of the factors above can be represented as a product, for example, 2 = ab, then one of a or b must be a unit. This is the traditional definition of "prime". It can also be proven that none of these factors obeys Euclid's lemma; for example, 2 divides neither (1 + 5) nor (1 5) even though it divides their product 6. In algebraic number theory 2 is called irreducible in (only divisible by itself or a unit) but not prime in (if it divides a product it must divide one of the factors). The mention of is required because 2 is prime and irreducible in Using these definitions it can be proven that in any integral domain a prime must be irreducible. Euclid's classical lemma can be rephrased as "in the ring of integers every irreducible is prime". This is also true in and but not in

The rings in which factorization into irreducibles is essentially unique are called unique factorization domains. Important examples are polynomial rings over the integers or over a field, Euclidean domains and principal ideal domains.

In 1843 Kummer introduced the concept of ideal number, which was developed further by Dedekind (1876) into the modern theory of ideals, special subsets of rings. Multiplication is defined for ideals, and the rings in which they have unique factorization are called Dedekind domains.

There is a version of unique factorization for ordinals, though it requires some additional conditions to ensure uniqueness.

Any commutative Möbius monoid satisfies a unique factorization theorem and thus possesses arithmetical properties similar to those of the multiplicative semigroup of positive integers. Fundamental Theorem of Arithmetic is, in fact, a special case of the unique factorization theorem in commutative Möbius monoids.

See also

Notes

  1. 1 2 Gauss (1986 , Art. 16)
  2. Gauss (1986 , Art. 131)
  3. Long (1972 , p. 44)
  4. Pettofrezzo & Byrkit (1970 , p. 53)
  5. Hardy & Wright (2008 , Thm 2)
  6. In a ring of algebraic integers, the factorization into prime elements may be non unique, but one can recover a unique factorization if one factors into ideals.
  7. Weil (2007 , p. 5): "Even in Euclid, we fail to find a general statement about the uniqueness of the factorization of an integer into primes; surely he may have been aware of it, but all he has is a statement (Eucl.IX.I4) about the l.c.m. of any number of given primes."
  8. A. Goksel Agargun and E. Mehmet Özkan. "A Historical Survey of the Fundamental Theorem of Arithmetic" (PDF). Historia Mathematica: 209. One could say that Euclid takes the first step on the way to the existence of prime factorization, and al-Farisi takes the final step by actually proving the existence of a finite prime factorization in his first proposition.
  9. Rashed, Roshdi (2002-09-11). Encyclopedia of the History of Arabic Science. Routledge. p. 385. ISBN   9781134977246. The famous physicist and mathematician Kamal al-Din al-Farisi compiled a paper in which he set out deliberately to prove the theorem of Ibn Qurra in an algebraic way. This forced him to an understanding of the first arithmetical functions and to a full preparation which led him to state for the first time the fundamental theorem of arithmetic.
  10. Long (1972 , p. 45)
  11. Pettofrezzo & Byrkit (1970 , p. 55)
  12. Hardy & Wright (2008 , § 1.2)
  13. Dawson, John W. (2015), Why Prove it Again? Alternative Proofs in Mathematical Practice., Springer, p. 45, ISBN   9783319173689
  14. Gauss, BQ, §§ 31–34
  15. Hardy & Wright (2008 , § 14.6)

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the ring of integers of an algebraic number field is principal if it consists of multiples of a single element of the ring, and nonprincipal otherwise. By the principal ideal theorem any nonprincipal ideal becomes principal when extended to an ideal of the Hilbert class field. This means that there is an element of the ring of integers of the Hilbert class field, which is an ideal number, such that the original nonprincipal ideal is equal to the collection of all multiples of this ideal number by elements of this ring of integers that lie in the original field's ring of integers.

In mathematics, a Hurwitz quaternion is a quaternion whose components are either all integers or all half-integers. The set of all Hurwitz quaternions is

In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers:

In algebra, Gauss's lemma, named after Carl Friedrich Gauss, is a theorem about polynomials over the integers, or, more generally, over a unique factorization domain. Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials.

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.

Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3p is solvable if and only if x3q is solvable.

In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

This is a glossary of concepts and results in number theory, a field of mathematics. Concepts and results in arithmetic geometry and diophantine geometry can be found in Glossary of arithmetic and diophantine geometry.

References

The Disquisitiones Arithmeticae has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

The two monographs Gauss published on biquadratic reciprocity have consecutively numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, § n". Footnotes referencing the Disquisitiones Arithmeticae are of the form "Gauss, DA, Art. n".

These are in Gauss's Werke, Vol II, pp. 65–92 and 93–148; German translations are pp. 511–533 and 534–586 of the German edition of the Disquisitiones.