In number theory, an arithmetic, arithmetical, or number-theoretic function [1] [2] is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. [3] [4] [5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". [6] There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.
An arithmetic function a is
Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.
Then an arithmetic function a is
In this article, and mean that the sum or product is over all prime numbers: and Similarly, and mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included):
The notations and mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if n = 12, then
The notations can be combined: and mean that the sum or product is over all prime divisors of n. For example, if n = 18, then and similarly and mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then
The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes: where p1 < p2 < ... < pk are primes and the aj are positive integers. (1 is given by the empty product.)
It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p-adic valuation νp(n) to be the exponent of the highest power of the prime p that divides n. That is, if p is one of the pi then νp(n) = ai, otherwise it is zero. Then
In terms of the above the prime omega functions ω and Ω are defined by
To avoid repetition, whenever possible formulas for the functions listed in this article are given in terms of n and the corresponding pi, ai, ω, and Ω.
σk(n) is the sum of the kth powers of the positive divisors of n, including 1 and n, where k is a complex number.
σ1(n), the sum of the (positive) divisors of n, is usually denoted by σ(n).
Since a positive number to the zero power is one, σ0(n) is therefore the number of (positive) divisors of n; it is usually denoted by d(n) or τ(n) (for the German Teiler = divisors).
Setting k = 0 in the second product gives
φ(n) , the Euler totient function, is the number of positive integers not greater than n that are coprime to n.
Jk(n) , the Jordan totient function, is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n. It is a generalization of Euler's totient, φ(n) = J1(n).
μ(n) , the Möbius function, is important because of the Möbius inversion formula. See Dirichlet convolution, below.
This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)
τ(n) , the Ramanujan tau function, is defined by its generating function identity:
Although it is hard to say exactly what "arithmetical property of n" it "expresses", [7] (τ(n) is (2π)−12 times the nth Fourier coefficient in the q-expansion of the modular discriminant function) [8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk(n) and rk(n) functions (because these are also coefficients in the expansion of modular forms).
cq(n) , Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity:
Even though it is defined as a sum of complex numbers (irrational for most values of q), it is an integer. For a fixed value of n it is multiplicative in q:
The Dedekind psi function, used in the theory of modular functions, is defined by the formula
λ(n) , the Liouville function, is defined by
All Dirichlet characters χ(n) are completely multiplicative. Two characters have special notations:
The principal character (mod n) is denoted by χ0(a) (or χ1(a)). It is defined as
The quadratic character (mod n) is denoted by the Jacobi symbol for odd n (it is not defined for even n):
In this formula is the Legendre symbol, defined for all integers a and all odd primes p by
Following the normal convention for the empty product,
ω(n), defined above as the number of distinct primes dividing n, is additive (see Prime omega function).
Ω(n) , defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function).
For a fixed prime p, νp(n), defined above as the exponent of the largest power of p dividing n, is completely additive.
, where is the arithmetic derivative.
These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.
π(x), the prime-counting function, is the number of primes not exceeding x. It is the summation function of the characteristic function of the prime numbers.
A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are the k-th power of some prime number, and the value 0 on other integers.
ϑ(x) and ψ(x), the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding x.
The second Chebyshev function ψ(x) is the summation function of the von Mangoldt function just below.
Λ(n) , the von Mangoldt function, is 0 unless the argument n is a prime power pk, in which case it is the natural log of the prime p:
p(n) , the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:
λ(n) , the Carmichael function, is the smallest positive number such that for all a coprime to n. Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n.
For powers of odd primes and for 2 and 4, λ(n) is equal to the Euler totient function of n; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n: and for general n it is the least common multiple of λ of each of the prime power factors of n:
h(n) , the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n. The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.
rk(n) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.
Using the Heaviside notation for the derivative, the arithmetic derivative D(n) is a function such that
Given an arithmetic function a(n), its summation functionA(x) is defined by A can be regarded as a function of a real variable. Given a positive integer m, A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a(m) ≠ 0.
Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:
Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x.
A classical example of this phenomenon [9] is given by the divisor summatory function, the summation function of d(n), the number of divisors of n:
An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if
as x tends to infinity. The example above shows that d(n) has the average order log(n). [10]
Given an arithmetic function a(n), let Fa(s), for complex s, be the function defined by the corresponding Dirichlet series (where it converges): [11] Fa(s) is called a generating function of a(n). The simplest such series, corresponding to the constant function a(n) = 1 for all n, is ζ(s) the Riemann zeta function.
The generating function of the Möbius function is the inverse of the zeta function:
Consider two arithmetic functions a and b and their respective generating functions Fa(s) and Fb(s). The product Fa(s)Fb(s) can be computed as follows:
It is a straightforward exercise to show that if c(n) is defined by then
This function c is called the Dirichlet convolution of a and b, and is denoted by .
A particularly important case is convolution with the constant function a(n) = 1 for all n, corresponding to multiplying the generating function by the zeta function:
Multiplying by the inverse of the zeta function gives the Möbius inversion formula:
If f is multiplicative, then so is g. If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.
There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.
Here are a few examples:
For all (Lagrange's four-square theorem).
where the Kronecker symbol has the values
There is a formula for r3 in the section on class numbers below. where ν = ν2(n). [21] [22] [23]
where [24]
Define the function σk*(n) as [25]
That is, if n is odd, σk*(n) is the sum of the kth powers of the divisors of n, that is, σk(n), and if n is even it is the sum of the kth powers of the even divisors of n minus the sum of the kth powers of the odd divisors of n.
Adopt the convention that Ramanujan's τ(x) = 0 if x is not an integer.
Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series:
The sequence is called the convolution or the Cauchy product of the sequences an and bn.
These formulas may be proved analytically (see Eisenstein series) or by elementary methods. [28]
Since σk(n) (for natural number k) and τ(n) are integers, the above formulas can be used to prove congruences [35] for the functions. See Ramanujan tau function for some examples.
Extend the domain of the partition function by setting p(0) = 1.
Peter Gustav Lejeune Dirichlet discovered formulas that relate the class number h of quadratic number fields to the Jacobi symbol. [37]
An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D/4 is squarefree, and D/4 ≡ 2 or 3 (mod 4). [38]
Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the Kronecker symbol:
Then if D < −4 is a fundamental discriminant [39] [40]
There is also a formula relating r3 and h. Again, let D be a fundamental discriminant, D < −4. Then [41]
Let be the nth harmonic number. Then
The Riemann hypothesis is also equivalent to the statement that, for all n > 5040, (where γ is the Euler–Mascheroni constant). This is Robin's theorem.
In 1965 P Kesava Menon proved [47]
This has been generalized by a number of mathematicians. For example,
In fact, if f is any arithmetical function [51] [52] where stands for Dirichlet convolution.
Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity:
Let D(n) be the arithmetic derivative. Then the logarithmic derivative See Arithmetic derivative for details.
Let λ(n) be Liouville's function. Then
Let λ(n) be Carmichael's function. Then
See Multiplicative group of integers modulo n and Primitive root modulo n.
n | factorization | 𝜙(n) | ω(n) | Ω(n) | 𝜆(n) | 𝜇(n) | 𝛬(n) | π(n) | 𝜎0(n) | 𝜎1(n) | 𝜎2(n) | r2(n) | r3(n) | r4(n) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 4 | 6 | 8 |
2 | 2 | 1 | 1 | 1 | −1 | −1 | 0.69 | 1 | 2 | 3 | 5 | 4 | 12 | 24 |
3 | 3 | 2 | 1 | 1 | −1 | −1 | 1.10 | 2 | 2 | 4 | 10 | 0 | 8 | 32 |
4 | 22 | 2 | 1 | 2 | 1 | 0 | 0.69 | 2 | 3 | 7 | 21 | 4 | 6 | 24 |
5 | 5 | 4 | 1 | 1 | −1 | −1 | 1.61 | 3 | 2 | 6 | 26 | 8 | 24 | 48 |
6 | 2 · 3 | 2 | 2 | 2 | 1 | 1 | 0 | 3 | 4 | 12 | 50 | 0 | 24 | 96 |
7 | 7 | 6 | 1 | 1 | −1 | −1 | 1.95 | 4 | 2 | 8 | 50 | 0 | 0 | 64 |
8 | 23 | 4 | 1 | 3 | −1 | 0 | 0.69 | 4 | 4 | 15 | 85 | 4 | 12 | 24 |
9 | 32 | 6 | 1 | 2 | 1 | 0 | 1.10 | 4 | 3 | 13 | 91 | 4 | 30 | 104 |
10 | 2 · 5 | 4 | 2 | 2 | 1 | 1 | 0 | 4 | 4 | 18 | 130 | 8 | 24 | 144 |
11 | 11 | 10 | 1 | 1 | −1 | −1 | 2.40 | 5 | 2 | 12 | 122 | 0 | 24 | 96 |
12 | 22 · 3 | 4 | 2 | 3 | −1 | 0 | 0 | 5 | 6 | 28 | 210 | 0 | 8 | 96 |
13 | 13 | 12 | 1 | 1 | −1 | −1 | 2.56 | 6 | 2 | 14 | 170 | 8 | 24 | 112 |
14 | 2 · 7 | 6 | 2 | 2 | 1 | 1 | 0 | 6 | 4 | 24 | 250 | 0 | 48 | 192 |
15 | 3 · 5 | 8 | 2 | 2 | 1 | 1 | 0 | 6 | 4 | 24 | 260 | 0 | 0 | 192 |
16 | 24 | 8 | 1 | 4 | 1 | 0 | 0.69 | 6 | 5 | 31 | 341 | 4 | 6 | 24 |
17 | 17 | 16 | 1 | 1 | −1 | −1 | 2.83 | 7 | 2 | 18 | 290 | 8 | 48 | 144 |
18 | 2 · 32 | 6 | 2 | 3 | −1 | 0 | 0 | 7 | 6 | 39 | 455 | 4 | 36 | 312 |
19 | 19 | 18 | 1 | 1 | −1 | −1 | 2.94 | 8 | 2 | 20 | 362 | 0 | 24 | 160 |
20 | 22 · 5 | 8 | 2 | 3 | −1 | 0 | 0 | 8 | 6 | 42 | 546 | 8 | 24 | 144 |
21 | 3 · 7 | 12 | 2 | 2 | 1 | 1 | 0 | 8 | 4 | 32 | 500 | 0 | 48 | 256 |
22 | 2 · 11 | 10 | 2 | 2 | 1 | 1 | 0 | 8 | 4 | 36 | 610 | 0 | 24 | 288 |
23 | 23 | 22 | 1 | 1 | −1 | −1 | 3.14 | 9 | 2 | 24 | 530 | 0 | 0 | 192 |
24 | 23 · 3 | 8 | 2 | 4 | 1 | 0 | 0 | 9 | 8 | 60 | 850 | 0 | 24 | 96 |
25 | 52 | 20 | 1 | 2 | 1 | 0 | 1.61 | 9 | 3 | 31 | 651 | 12 | 30 | 248 |
26 | 2 · 13 | 12 | 2 | 2 | 1 | 1 | 0 | 9 | 4 | 42 | 850 | 8 | 72 | 336 |
27 | 33 | 18 | 1 | 3 | −1 | 0 | 1.10 | 9 | 4 | 40 | 820 | 0 | 32 | 320 |
28 | 22 · 7 | 12 | 2 | 3 | −1 | 0 | 0 | 9 | 6 | 56 | 1050 | 0 | 0 | 192 |
29 | 29 | 28 | 1 | 1 | −1 | −1 | 3.37 | 10 | 2 | 30 | 842 | 8 | 72 | 240 |
30 | 2 · 3 · 5 | 8 | 3 | 3 | −1 | −1 | 0 | 10 | 8 | 72 | 1300 | 0 | 48 | 576 |
31 | 31 | 30 | 1 | 1 | −1 | −1 | 3.43 | 11 | 2 | 32 | 962 | 0 | 0 | 256 |
32 | 25 | 16 | 1 | 5 | −1 | 0 | 0.69 | 11 | 6 | 63 | 1365 | 4 | 12 | 24 |
33 | 3 · 11 | 20 | 2 | 2 | 1 | 1 | 0 | 11 | 4 | 48 | 1220 | 0 | 48 | 384 |
34 | 2 · 17 | 16 | 2 | 2 | 1 | 1 | 0 | 11 | 4 | 54 | 1450 | 8 | 48 | 432 |
35 | 5 · 7 | 24 | 2 | 2 | 1 | 1 | 0 | 11 | 4 | 48 | 1300 | 0 | 48 | 384 |
36 | 22 · 32 | 12 | 2 | 4 | 1 | 0 | 0 | 11 | 9 | 91 | 1911 | 4 | 30 | 312 |
37 | 37 | 36 | 1 | 1 | −1 | −1 | 3.61 | 12 | 2 | 38 | 1370 | 8 | 24 | 304 |
38 | 2 · 19 | 18 | 2 | 2 | 1 | 1 | 0 | 12 | 4 | 60 | 1810 | 0 | 72 | 480 |
39 | 3 · 13 | 24 | 2 | 2 | 1 | 1 | 0 | 12 | 4 | 56 | 1700 | 0 | 0 | 448 |
40 | 23 · 5 | 16 | 2 | 4 | 1 | 0 | 0 | 12 | 8 | 90 | 2210 | 8 | 24 | 144 |
41 | 41 | 40 | 1 | 1 | −1 | −1 | 3.71 | 13 | 2 | 42 | 1682 | 8 | 96 | 336 |
42 | 2 · 3 · 7 | 12 | 3 | 3 | −1 | −1 | 0 | 13 | 8 | 96 | 2500 | 0 | 48 | 768 |
43 | 43 | 42 | 1 | 1 | −1 | −1 | 3.76 | 14 | 2 | 44 | 1850 | 0 | 24 | 352 |
44 | 22 · 11 | 20 | 2 | 3 | −1 | 0 | 0 | 14 | 6 | 84 | 2562 | 0 | 24 | 288 |
45 | 32 · 5 | 24 | 2 | 3 | −1 | 0 | 0 | 14 | 6 | 78 | 2366 | 8 | 72 | 624 |
46 | 2 · 23 | 22 | 2 | 2 | 1 | 1 | 0 | 14 | 4 | 72 | 2650 | 0 | 48 | 576 |
47 | 47 | 46 | 1 | 1 | −1 | −1 | 3.85 | 15 | 2 | 48 | 2210 | 0 | 0 | 384 |
48 | 24 · 3 | 16 | 2 | 5 | −1 | 0 | 0 | 15 | 10 | 124 | 3410 | 0 | 8 | 96 |
49 | 72 | 42 | 1 | 2 | 1 | 0 | 1.95 | 15 | 3 | 57 | 2451 | 4 | 54 | 456 |
50 | 2 · 52 | 20 | 2 | 3 | −1 | 0 | 0 | 15 | 6 | 93 | 3255 | 12 | 84 | 744 |
51 | 3 · 17 | 32 | 2 | 2 | 1 | 1 | 0 | 15 | 4 | 72 | 2900 | 0 | 48 | 576 |
52 | 22 · 13 | 24 | 2 | 3 | −1 | 0 | 0 | 15 | 6 | 98 | 3570 | 8 | 24 | 336 |
53 | 53 | 52 | 1 | 1 | −1 | −1 | 3.97 | 16 | 2 | 54 | 2810 | 8 | 72 | 432 |
54 | 2 · 33 | 18 | 2 | 4 | 1 | 0 | 0 | 16 | 8 | 120 | 4100 | 0 | 96 | 960 |
55 | 5 · 11 | 40 | 2 | 2 | 1 | 1 | 0 | 16 | 4 | 72 | 3172 | 0 | 0 | 576 |
56 | 23 · 7 | 24 | 2 | 4 | 1 | 0 | 0 | 16 | 8 | 120 | 4250 | 0 | 48 | 192 |
57 | 3 · 19 | 36 | 2 | 2 | 1 | 1 | 0 | 16 | 4 | 80 | 3620 | 0 | 48 | 640 |
58 | 2 · 29 | 28 | 2 | 2 | 1 | 1 | 0 | 16 | 4 | 90 | 4210 | 8 | 24 | 720 |
59 | 59 | 58 | 1 | 1 | −1 | −1 | 4.08 | 17 | 2 | 60 | 3482 | 0 | 72 | 480 |
60 | 22 · 3 · 5 | 16 | 3 | 4 | 1 | 0 | 0 | 17 | 12 | 168 | 5460 | 0 | 0 | 576 |
61 | 61 | 60 | 1 | 1 | −1 | −1 | 4.11 | 18 | 2 | 62 | 3722 | 8 | 72 | 496 |
62 | 2 · 31 | 30 | 2 | 2 | 1 | 1 | 0 | 18 | 4 | 96 | 4810 | 0 | 96 | 768 |
63 | 32 · 7 | 36 | 2 | 3 | −1 | 0 | 0 | 18 | 6 | 104 | 4550 | 0 | 0 | 832 |
64 | 26 | 32 | 1 | 6 | 1 | 0 | 0.69 | 18 | 7 | 127 | 5461 | 4 | 6 | 24 |
65 | 5 · 13 | 48 | 2 | 2 | 1 | 1 | 0 | 18 | 4 | 84 | 4420 | 16 | 96 | 672 |
66 | 2 · 3 · 11 | 20 | 3 | 3 | −1 | −1 | 0 | 18 | 8 | 144 | 6100 | 0 | 96 | 1152 |
67 | 67 | 66 | 1 | 1 | −1 | −1 | 4.20 | 19 | 2 | 68 | 4490 | 0 | 24 | 544 |
68 | 22 · 17 | 32 | 2 | 3 | −1 | 0 | 0 | 19 | 6 | 126 | 6090 | 8 | 48 | 432 |
69 | 3 · 23 | 44 | 2 | 2 | 1 | 1 | 0 | 19 | 4 | 96 | 5300 | 0 | 96 | 768 |
70 | 2 · 5 · 7 | 24 | 3 | 3 | −1 | −1 | 0 | 19 | 8 | 144 | 6500 | 0 | 48 | 1152 |
71 | 71 | 70 | 1 | 1 | −1 | −1 | 4.26 | 20 | 2 | 72 | 5042 | 0 | 0 | 576 |
72 | 23 · 32 | 24 | 2 | 5 | −1 | 0 | 0 | 20 | 12 | 195 | 7735 | 4 | 36 | 312 |
73 | 73 | 72 | 1 | 1 | −1 | −1 | 4.29 | 21 | 2 | 74 | 5330 | 8 | 48 | 592 |
74 | 2 · 37 | 36 | 2 | 2 | 1 | 1 | 0 | 21 | 4 | 114 | 6850 | 8 | 120 | 912 |
75 | 3 · 52 | 40 | 2 | 3 | −1 | 0 | 0 | 21 | 6 | 124 | 6510 | 0 | 56 | 992 |
76 | 22 · 19 | 36 | 2 | 3 | −1 | 0 | 0 | 21 | 6 | 140 | 7602 | 0 | 24 | 480 |
77 | 7 · 11 | 60 | 2 | 2 | 1 | 1 | 0 | 21 | 4 | 96 | 6100 | 0 | 96 | 768 |
78 | 2 · 3 · 13 | 24 | 3 | 3 | −1 | −1 | 0 | 21 | 8 | 168 | 8500 | 0 | 48 | 1344 |
79 | 79 | 78 | 1 | 1 | −1 | −1 | 4.37 | 22 | 2 | 80 | 6242 | 0 | 0 | 640 |
80 | 24 · 5 | 32 | 2 | 5 | −1 | 0 | 0 | 22 | 10 | 186 | 8866 | 8 | 24 | 144 |
81 | 34 | 54 | 1 | 4 | 1 | 0 | 1.10 | 22 | 5 | 121 | 7381 | 4 | 102 | 968 |
82 | 2 · 41 | 40 | 2 | 2 | 1 | 1 | 0 | 22 | 4 | 126 | 8410 | 8 | 48 | 1008 |
83 | 83 | 82 | 1 | 1 | −1 | −1 | 4.42 | 23 | 2 | 84 | 6890 | 0 | 72 | 672 |
84 | 22 · 3 · 7 | 24 | 3 | 4 | 1 | 0 | 0 | 23 | 12 | 224 | 10500 | 0 | 48 | 768 |
85 | 5 · 17 | 64 | 2 | 2 | 1 | 1 | 0 | 23 | 4 | 108 | 7540 | 16 | 48 | 864 |
86 | 2 · 43 | 42 | 2 | 2 | 1 | 1 | 0 | 23 | 4 | 132 | 9250 | 0 | 120 | 1056 |
87 | 3 · 29 | 56 | 2 | 2 | 1 | 1 | 0 | 23 | 4 | 120 | 8420 | 0 | 0 | 960 |
88 | 23 · 11 | 40 | 2 | 4 | 1 | 0 | 0 | 23 | 8 | 180 | 10370 | 0 | 24 | 288 |
89 | 89 | 88 | 1 | 1 | −1 | −1 | 4.49 | 24 | 2 | 90 | 7922 | 8 | 144 | 720 |
90 | 2 · 32 · 5 | 24 | 3 | 4 | 1 | 0 | 0 | 24 | 12 | 234 | 11830 | 8 | 120 | 1872 |
91 | 7 · 13 | 72 | 2 | 2 | 1 | 1 | 0 | 24 | 4 | 112 | 8500 | 0 | 48 | 896 |
92 | 22 · 23 | 44 | 2 | 3 | −1 | 0 | 0 | 24 | 6 | 168 | 11130 | 0 | 0 | 576 |
93 | 3 · 31 | 60 | 2 | 2 | 1 | 1 | 0 | 24 | 4 | 128 | 9620 | 0 | 48 | 1024 |
94 | 2 · 47 | 46 | 2 | 2 | 1 | 1 | 0 | 24 | 4 | 144 | 11050 | 0 | 96 | 1152 |
95 | 5 · 19 | 72 | 2 | 2 | 1 | 1 | 0 | 24 | 4 | 120 | 9412 | 0 | 0 | 960 |
96 | 25 · 3 | 32 | 2 | 6 | 1 | 0 | 0 | 24 | 12 | 252 | 13650 | 0 | 24 | 96 |
97 | 97 | 96 | 1 | 1 | −1 | −1 | 4.57 | 25 | 2 | 98 | 9410 | 8 | 48 | 784 |
98 | 2 · 72 | 42 | 2 | 3 | −1 | 0 | 0 | 25 | 6 | 171 | 12255 | 4 | 108 | 1368 |
99 | 32 · 11 | 60 | 2 | 3 | −1 | 0 | 0 | 25 | 6 | 156 | 11102 | 0 | 72 | 1248 |
100 | 22 · 52 | 40 | 2 | 4 | 1 | 0 | 0 | 25 | 9 | 217 | 13671 | 12 | 30 | 744 |
n | factorization | 𝜙(n) | ω(n) | Ω(n) | 𝜆(n) | 𝜇(n) | 𝛬(n) | π(n) | 𝜎0(n) | 𝜎1(n) | 𝜎2(n) | r2(n) | r3(n) | r4(n) |
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime.
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted .
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
Differential entropy is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.
In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula
In probability and statistics, the Hellinger distance is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations. The theorem is named after its discoverer, Emmy Noether.
In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".
For certain applications in linear algebra, it is useful to know properties of the probability distribution of the largest eigenvalue of a finite sum of random matrices. Suppose is a finite sequence of random matrices. Analogous to the well-known Chernoff bound for sums of scalars, a bound on the following is sought for a given parameter t:
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.