Divisor summatory function

Last updated
The summatory function, with leading terms removed, for
x
<
10
4
{\displaystyle x<10^{4}} Divisor-summatory.svg
The summatory function, with leading terms removed, for
The summatory function, with leading terms removed, for
x
<
10
7
{\displaystyle x<10^{7}} Divisor-summatory-big.svg
The summatory function, with leading terms removed, for
The summatory function, with leading terms removed, for
x
<
10
7
{\displaystyle x<10^{7}}
, graphed as a distribution or histogram. The vertical scale is not constant left to right; click on image for a detailed description. Divisor-distribution.jpeg
The summatory function, with leading terms removed, for , graphed as a distribution or histogram. The vertical scale is not constant left to right; click on image for a detailed description.

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

Contents

Definition

The divisor summatory function is defined as

where

is the divisor function. The divisor function counts the number of ways that the integer n can be written as a product of two integers. More generally, one defines

where dk(n) counts the number of ways that n can be written as a product of k numbers. This quantity can be visualized as the count of the number of lattice points fenced off by a hyperbolic surface in k dimensions. Thus, for k=2, D(x) = D2(x) counts the number of points on a square lattice bounded on the left by the vertical-axis, on the bottom by the horizontal-axis, and to the upper-right by the hyperbola jk = x. Roughly, this shape may be envisioned as a hyperbolic simplex. This allows us to provide an alternative expression for D(x), and a simple way to compute it in time:

, where

If the hyperbola in this context is replaced by a circle then determining the value of the resulting function is known as the Gauss circle problem.

Sequence of D(n)(sequence A006218 in the OEIS ):
0, 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, 52, 58, 60, 66, 70, 74, 76, 84, 87, 91, 95, 101, 103, 111, ...

Dirichlet's divisor problem

Finding a closed form for this summed expression seems to be beyond the techniques available, but it is possible to give approximations. The leading behavior of the series is given by

where is the Euler–Mascheroni constant, and the error term is

Here, denotes Big-O notation. This estimate can be proven using the Dirichlet hyperbola method, and was first established by Dirichlet in 1849. [1] :37–38,69 The Dirichlet divisor problem, precisely stated, is to improve this error bound by finding the smallest value of for which

holds true for all . As of today, this problem remains unsolved. Progress has been slow. Many of the same methods work for this problem and for Gauss's circle problem, another lattice-point counting problem. Section F1 of Unsolved Problems in Number Theory [2] surveys what is known and not known about these problems.

So, lies somewhere between 1/4 and 131/416 (approx. 0.3149); it is widely conjectured to be 1/4. Theoretical evidence lends credence to this conjecture, since has a (non-Gaussian) limiting distribution. [6] The value of 1/4 would also follow from a conjecture on exponent pairs. [7]

Piltz divisor problem

In the generalized case, one has

where is a polynomial of degree . Using simple estimates, it is readily shown that

for integer . As in the case, the infimum of the bound is not known for any value of . Computing these infima is known as the Piltz divisor problem, after the name of the German mathematician Adolf Piltz (also see his German page). Defining the order as the smallest value for which holds, for any , one has the following results (note that is the of the previous section):

[5]


[8] and [9]


Mellin transform

Both portions may be expressed as Mellin transforms:

for . Here, is the Riemann zeta function. Similarly, one has

with . The leading term of is obtained by shifting the contour past the double pole at : the leading term is just the residue, by Cauchy's integral formula. In general, one has

and likewise for , for .

Notes

  1. 1 2 Montgomery, Hugh; R. C. Vaughan (2007). Multiplicative Number Theory I: Classical Theory. Cambridge: Cambridge University Press. ISBN   978-0-521-84903-6.
  2. Guy, Richard K. (2004). Unsolved Problems in Number Theory (3rd ed.). Berlin: Springer. ISBN   978-0-387-20860-2.
  3. 1 2 3 4 5 6 7 Ivic, Aleksandar (2003). The Riemann Zeta-Function. New York: Dover Publications. ISBN   0-486-42813-3.
  4. Iwaniec, H.; C. J. Mozzochi (1988). "On the divisor and circle problems". Journal of Number Theory. 29: 60–93. doi: 10.1016/0022-314X(88)90093-5 .
  5. 1 2 Huxley, M. N. (2003). "Exponential sums and lattice points III". Proc. London Math. Soc. 87 (3): 591–609. doi:10.1112/S0024611503014485. ISSN   0024-6115. Zbl   1065.11079.
  6. Heath-Brown, D. R. (1992). "The distribution and moments of the error term in the Dirichlet divisor problem". Acta Arithmetica. 60 (4): 389–415. doi: 10.4064/aa-60-4-389-415 . ISSN   0065-1036. S2CID   59450869. Theorem 1 The function has a distribution function
  7. Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. p. 59. ISBN   0-8218-0737-4. Zbl   0814.11001.
  8. G. Kolesnik. On the estimation of multiple exponential sums, in "Recent Progress in Analytic Number Theory", Symposium Durham 1979 (Vol. 1), Academic, London, 1981, pp. 231–246.
  9. Aleksandar Ivić. The Theory of the Riemann Zeta-function with Applications (Theorem 13.2). John Wiley and Sons 1985.

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In mathematics, the ATS theorem is the theorem on the approximation of a trigonometric sum by a shorter one. The application of the ATS theorem in certain problems of mathematical and theoretical physics can be very helpful.

<span class="mw-page-title-main">Montgomery's pair correlation conjecture</span>

In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery that the pair correlation between pairs of zeros of the Riemann zeta function is

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

References