Divisor summatory function

Last updated
The summatory function, with leading terms removed, for
x
<
10
4
{\displaystyle x<10^{4}} Divisor-summatory.svg
The summatory function, with leading terms removed, for
The summatory function, with leading terms removed, for
x
<
10
7
{\displaystyle x<10^{7}} Divisor-summatory-big.svg
The summatory function, with leading terms removed, for
The summatory function, with leading terms removed, for
x
<
10
7
{\displaystyle x<10^{7}}
, graphed as a distribution or histogram. The vertical scale is not constant left to right; click on image for a detailed description. Divisor-distribution.jpeg
The summatory function, with leading terms removed, for , graphed as a distribution or histogram. The vertical scale is not constant left to right; click on image for a detailed description.

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

Contents

Definition

The divisor summatory function is defined as

where

is the divisor function. The divisor function counts the number of ways that the integer n can be written as a product of two integers. More generally, one defines

where dk(n) counts the number of ways that n can be written as a product of k numbers. This quantity can be visualized as the count of the number of lattice points fenced off by a hyperbolic surface in k dimensions. Thus, for k = 2, D(x) = D2(x) counts the number of points on a square lattice bounded on the left by the vertical-axis, on the bottom by the horizontal-axis, and to the upper-right by the hyperbola jk = x. Roughly, this shape may be envisioned as a hyperbolic simplex. This allows us to provide an alternative expression for D(x), and a simple way to compute it in time:

, where

If the hyperbola in this context is replaced by a circle then determining the value of the resulting function is known as the Gauss circle problem.

Sequence of D(n) (sequence A006218 in the OEIS ):
0, 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, 52, 58, 60, 66, 70, 74, 76, 84, 87, 91, 95, 101, 103, 111, ...

Dirichlet's divisor problem

Finding a closed form for this summed expression seems to be beyond the techniques available, but it is possible to give approximations. The leading behavior of the series is given by

where is the Euler–Mascheroni constant, and the error term is

Here, denotes Big-O notation. This estimate can be proven using the Dirichlet hyperbola method, and was first established by Dirichlet in 1849. [1] :37–38,69 The Dirichlet divisor problem, precisely stated, is to improve this error bound by finding the smallest value of for which

holds true for all . As of today, this problem remains unsolved. Progress has been slow. Many of the same methods work for this problem and for Gauss's circle problem, another lattice-point counting problem. Section F1 of Unsolved Problems in Number Theory [2] surveys what is known and not known about these problems.

So, lies somewhere between 1/4 and 131/416 (approx. 0.3149); it is widely conjectured to be 1/4. Theoretical evidence lends credence to this conjecture, since has a (non-Gaussian) limiting distribution. [6] The value of 1/4 would also follow from a conjecture on exponent pairs. [7]

Piltz divisor problem

In the generalized case, one has

where is a polynomial of degree . Using simple estimates, it is readily shown that

for integer . As in the case, the infimum of the bound is not known for any value of . Computing these infima is known as the Piltz divisor problem, after the name of the German mathematician Adolf Piltz (also see his German page). Defining the order as the smallest value for which holds, for any , one has the following results (note that is the of the previous section):

[5]


[8] and [9]


Mellin transform

Both portions may be expressed as Mellin transforms:

for . Here, is the Riemann zeta function. Similarly, one has

with . The leading term of is obtained by shifting the contour past the double pole at : the leading term is just the residue, by Cauchy's integral formula. In general, one has

and likewise for , for .

Notes

  1. 1 2 Montgomery, Hugh; R. C. Vaughan (2007). Multiplicative Number Theory I: Classical Theory. Cambridge: Cambridge University Press. ISBN   978-0-521-84903-6.
  2. Guy, Richard K. (2004). Unsolved Problems in Number Theory (3rd ed.). Berlin: Springer. ISBN   978-0-387-20860-2.
  3. 1 2 3 4 5 6 7 Ivic, Aleksandar (2003). The Riemann Zeta-Function. New York: Dover Publications. ISBN   0-486-42813-3.
  4. Iwaniec, H.; C. J. Mozzochi (1988). "On the divisor and circle problems". Journal of Number Theory. 29: 60–93. doi: 10.1016/0022-314X(88)90093-5 .
  5. 1 2 Huxley, M. N. (2003). "Exponential sums and lattice points III". Proc. London Math. Soc. 87 (3): 591–609. doi:10.1112/S0024611503014485. ISSN   0024-6115. Zbl   1065.11079.
  6. Heath-Brown, D. R. (1992). "The distribution and moments of the error term in the Dirichlet divisor problem". Acta Arithmetica. 60 (4): 389–415. doi: 10.4064/aa-60-4-389-415 . ISSN   0065-1036. S2CID   59450869. Theorem 1 The function has a distribution function
  7. Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. p. 59. ISBN   0-8218-0737-4. Zbl   0814.11001.
  8. G. Kolesnik. On the estimation of multiple exponential sums, in "Recent Progress in Analytic Number Theory", Symposium Durham 1979 (Vol. 1), Academic, London, 1981, pp. 231–246.
  9. Aleksandar Ivić. The Theory of the Riemann Zeta-function with Applications (Theorem 13.2). John Wiley and Sons 1985.

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.

In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In mathematics, the ATS theorem is the theorem on the approximation of a trigonometric sum by a shorter one. The application of the ATS theorem in certain problems of mathematical and theoretical physics can be very helpful.

For certain applications in linear algebra, it is useful to know properties of the probability distribution of the largest eigenvalue of a finite sum of random matrices. Suppose is a finite sequence of random matrices. Analogous to the well-known Chernoff bound for sums of scalars, a bound on the following is sought for a given parameter t:

In mathematics, van der Corput's method generates estimates for exponential sums. The method applies two processes, the van der Corput processes A and B which relate the sums into simpler sums which are easier to estimate.

The trigonometry of a tetrahedron explains the relationships between the lengths and various types of angles of a general tetrahedron.

<span class="mw-page-title-main">Hyperbolastic functions</span> Mathematical functions

The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac. The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection. These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks, and epidemiological disease progression or regression.

Hypertabastic survival models were introduced in 2007 by Mohammad Tabatabai, Zoran Bursac, David Williams, and Karan Singh. This distribution can be used to analyze time-to-event data in biomedical and public health areas and normally called survival analysis. In engineering, the time-to-event analysis is referred to as reliability theory and in business and economics it is called duration analysis. Other fields may use different names for the same analysis. These survival models are applicable in many fields such as biomedical, behavioral science, social science, statistics, medicine, bioinformatics, medical informatics, data science especially in machine learning, computational biology, business economics, engineering, and commercial entities. They not only look at the time to event, but whether or not the event occurred. These time-to-event models can be applied in a variety of applications for instance, time after diagnosis of cancer until death, comparison of individualized treatment with standard care in cancer research, time until an individual defaults on loans, relapsed time for drug and smoking cessation, time until property sold after being put on the market, time until an individual upgrades to a new phone, time until job relocation, time until bones receive microscopic fractures when undergoing different stress levels, time from marriage until divorce, time until infection due to catheter, and time from bridge completion until first repair.

References