Dirichlet hyperbola method

Last updated
An example of the Dirichlet hyperbola method with
n
=
10
,
{\displaystyle n=10,}
a
[?]
2.7
,
{\displaystyle a\approx 2.7,}
and
b
[?]
3.7.
{\displaystyle b\approx 3.7.} Dirichlet hyperbola example 4.svg
An example of the Dirichlet hyperbola method with and

In number theory, the Dirichlet hyperbola method is a technique to evaluate the sum

Contents

where is a multiplicative function. The first step is to find a pair of multiplicative functions and such that, using Dirichlet convolution, we have ; the sum then becomes

where the inner sum runs over all ordered pairs of positive integers such that . In the Cartesian plane, these pairs lie on a hyperbola, and when the double sum is fully expanded, there is a bijection between the terms of the sum and the lattice points in the first quadrant on the hyperbolas of the form , where runs over the integers : for each such point , the sum contains a term , and vice versa.

Let be a real number, not necessarily an integer, such that , and let . Then the lattice points can be split into three overlapping regions: one region is bounded by and , another region is bounded by and , and the third is bounded by and . In the diagram, the first region is the union of the blue and red regions, the second region is the union of the red and green, and the third region is the red. Note that this third region is the intersection of the first two regions. By the principle of inclusion and exclusion, the full sum is therefore the sum over the first region, plus the sum over the second region, minus the sum over the third region. This yields the formula

Examples

Let be the divisor-counting function, and let be its summatory function:

Computing naïvely requires factoring every integer in the interval ; an improvement can be made by using a modified Sieve of Eratosthenes, but this still requires time. Since admits the Dirichlet convolution , taking in ( 1 ) yields the formula

which simplifies to

which can be evaluated in operations.

The method also has theoretical applications: for example, Peter Gustav Lejeune Dirichlet introduced the technique in 1849 to obtain the estimate [1] [2]

where is the Euler–Mascheroni constant.

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

<span class="mw-page-title-main">Divisor summatory function</span> Summatory function of the divisor-counting function

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

In computational learning theory, Rademacher complexity, named after Hans Rademacher, measures richness of a class of sets with respect to a probability distribution. The concept can also be extended to real valued functions.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In mathematics, a determinantal point process is a stochastic point process, the probability distribution of which is characterized as a determinant of some function. Such processes arise as important tools in random matrix theory, combinatorics, physics, and wireless network modeling.

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References

  1. Dirichlet, Peter Gustav Lejeune (1849). "Über die Bestimmung der mittleren Werthe in der Zahlentheorie". Abhandlungen der Königlich Preussischen Akademie der Wissenchaften (in German): 49–66 via Gallica.
  2. Tenenbaum, Gérald (2015-07-16). Introduction to Analytic and Probabilistic Number Theory. American Mathematical Soc. p. 44. ISBN   9780821898543.