Multiplicative function

Last updated

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

Contents

whenever a and b are coprime.

An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

Examples

Some multiplicative functions are defined to make formulas easier to write:

Other examples of multiplicative functions include many functions of importance in number theory, such as:

An example of a non-multiplicative function is the arithmetic function r2(n) - the number of representations of n as a sum of squares of two integers, positive, negative, or zero, where in counting the number of ways, reversal of order is allowed. For example:

1 = 12 + 02 = (−1)2 + 02 = 02 + 12 = 02 + (−1)2

and therefore r2(1) = 4 ≠ 1. This shows that the function is not multiplicative. However, r2(n)/4 is multiplicative.

In the On-Line Encyclopedia of Integer Sequences, sequences of values of a multiplicative function have the keyword "mult".

See arithmetic function for some other examples of non-multiplicative functions.

Properties

A multiplicative function is completely determined by its values at the powers of prime numbers, a consequence of the fundamental theorem of arithmetic. Thus, if n is a product of powers of distinct primes, say n = paqb ..., then f(n) = f(pa) f(qb) ...

This property of multiplicative functions significantly reduces the need for computation, as in the following examples for n = 144 = 24 · 32:

Similarly, we have:

In general, if f(n) is a multiplicative function and a, b are any two positive integers, then

f(a) · f(b) = f(gcd(a,b)) · f(lcm(a,b)).

Every completely multiplicative function is a homomorphism of monoids and is completely determined by its restriction to the prime numbers.

Convolution

If f and g are two multiplicative functions, one defines a new multiplicative function , the Dirichlet convolution of f and g, by

where the sum extends over all positive divisors d of n. With this operation, the set of all multiplicative functions turns into an abelian group; the identity element is ε. Convolution is commutative, associative, and distributive over addition.

Relations among the multiplicative functions discussed above include:

The Dirichlet convolution can be defined for general arithmetic functions, and yields a ring structure, the Dirichlet ring.

The Dirichlet convolution of two multiplicative functions is again multiplicative. A proof of this fact is given by the following expansion for relatively prime :

Dirichlet series for some multiplicative functions

More examples are shown in the article on Dirichlet series.

Rational arithmetical functions

An arithmetical function f is said to be a rational arithmetical function of order if there exists completely multiplicative functions g1,...,gr, h1,...,hs such that

where the inverses are with respect to the Dirichlet convolution. Rational arithmetical functions of order are known as totient functions, and rational arithmetical functions of order are known as quadratic functions or specially multiplicative functions. Euler's function is a totient function, and the divisor function is a quadratic function. Completely multiplicative functions are rational arithmetical functions of order . Liouville's function is completely multiplicative. The Möbius function is a rational arithmetical function of order . By convention, the identity element under the Dirichlet convolution is a rational arithmetical function of order .

All rational arithmetical functions are multiplicative. A multiplicative function f is a rational arithmetical function of order if and only if its Bell series is of the form

for all prime numbers .

The concept of a rational arithmetical function originates from R. Vaidyanathaswamy (1931).

Multiplicative function over Fq[X]

Let A = Fq[X], the polynomial ring over the finite field with q elements. A is a principal ideal domain and therefore A is a unique factorization domain.

A complex-valued function on A is called multiplicative if whenever f and g are relatively prime.

Zeta function and Dirichlet series in Fq[X]

Let h be a polynomial arithmetic function (i.e. a function on set of monic polynomials over A). Its corresponding Dirichlet series is defined to be

where for set if and otherwise.

The polynomial zeta function is then

Similar to the situation in N, every Dirichlet series of a multiplicative function h has a product representation (Euler product):

where the product runs over all monic irreducible polynomials P. For example, the product representation of the zeta function is as for the integers:

Unlike the classical zeta function, is a simple rational function:

In a similar way, If f and g are two polynomial arithmetic functions, one defines f * g, the Dirichlet convolution of f and g, by

where the sum is over all monic divisors d of m, or equivalently over all pairs (a, b) of monic polynomials whose product is m. The identity still holds.

Multivariate

Multivariate functions can be constructed using multiplicative model estimators. Where a matrix function of A is defined as

a sum can be distributed across the product

For the efficient estimation of Σ(.), the following two nonparametric regressions can be considered:

and

Thus it gives an estimate value of

with a local likelihood function for with known and unknown .

Generalizations

An arithmetical function is quasimultiplicative if there exists a nonzero constant such that for all positive integers with . This concept originates by Lahiri (1972).

An arithmetical function is semimultiplicative if there exists a nonzero constant , a positive integer and a multiplicative function such that for all positive integers (under the convention that if is not a positive integer.) This concept is due to David Rearick (1966).

An arithmetical function is Selberg multiplicative if for each prime there exists a function on nonnegative integers with for all but finitely many primes such that for all positive integers , where is the exponent of in the canonical factorization of .

It is known that the classes of semimultiplicative and Selberg multiplicative functions coincide. They both satisfy the arithmetical identity for all positive integers . See Haukkanen (2012).

It is well known and easy to see that multiplicative functions are quasimultiplicative functions with and quasimultiplicative functions are semimultiplicative functions with .

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

In algebra and number theory, a distribution is a function on a system of finite sets into an abelian group which is analogous to an integral: it is thus the algebraic analogue of a distribution in the sense of generalised function.

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References