This article includes a list of general references, but it lacks sufficient corresponding inline citations .(June 2018) |
In mathematics, the Dirichlet convolution (or divisor convolution) is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.
If are two arithmetic functions from the positive integers to the complex numbers, the Dirichlet convolution f ∗ g is a new arithmetic function defined by:
where the sum extends over all positive divisors d of n, or equivalently over all distinct pairs (a, b) of positive integers whose product is n.
This product occurs naturally in the study of Dirichlet series such as the Riemann zeta function. It describes the multiplication of two Dirichlet series in terms of their coefficients:
The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε(n) = 1 if n = 1 and ε(n) = 0 if n > 1. The units (invertible elements) of this ring are the arithmetic functions f with f(1) ≠ 0.
Specifically, [1] Dirichlet convolution is associative,
distributive over addition
and has an identity element,
Furthermore, for each having , there exists an arithmetic function with , called the Dirichlet inverse of .
The Dirichlet convolution of two multiplicative functions is again multiplicative, and every not constantly zero multiplicative function has a Dirichlet inverse which is also multiplicative. In other words, multiplicative functions form a subgroup of the group of invertible elements of the Dirichlet ring. Beware however that the sum of two multiplicative functions is not multiplicative (since ), so the subset of multiplicative functions is not a subring of the Dirichlet ring. The article on multiplicative functions lists several convolution relations among important multiplicative functions.
Another operation on arithmetic functions is pointwise multiplication: fg is defined by (fg)(n) = f(n) g(n). Given a completely multiplicative function , pointwise multiplication by distributes over Dirichlet convolution: . [2] The convolution of two completely multiplicative functions is multiplicative, but not necessarily completely multiplicative.
In these formulas, we use the following arithmetical functions:
The following relations hold:
This last identity shows that the prime-counting function is given by the summatory function
where is the Mertens function and is the distinct prime factor counting function from above. This expansion follows from the identity for the sums over Dirichlet convolutions given on the divisor sum identities page (a standard trick for these sums). [3]
Given an arithmetic function its Dirichlet inverse may be calculated recursively: the value of is in terms of for .
For :
For :
For :
For :
and in general for ,
The following properties of the Dirichlet inverse hold: [4]
Arithmetic function | Dirichlet inverse: [5] |
---|---|
Constant function with value 1 | Möbius function μ |
Liouville's function λ | Absolute value of Möbius function |μ| |
Euler's totient function | |
The generalized sum-of-divisors function |
An exact, non-recursive formula for the Dirichlet inverse of any arithmetic function f is given in Divisor sum identities. A more partition theoretic expression for the Dirichlet inverse of f is given by
The following formula provides a compact way of expressing the Dirichlet inverse of an invertible arithmetic function f :
where the expression stands for the arithmetic function convoluted with itself k times. Notice that, for a fixed positive integer , if then , this is because and every way of expressing n as a product of k positive integers must include a 1, so the series on the right hand side converges for every fixed positive integer n.
If f is an arithmetic function, the Dirichlet series generating function is defined by
for those complex arguments s for which the series converges (if there are any). The multiplication of Dirichlet series is compatible with Dirichlet convolution in the following sense:
for all s for which both series of the left hand side converge, one of them at least converging absolutely (note that simple convergence of both series of the left hand side does not imply convergence of the right hand side!). This is akin to the convolution theorem if one thinks of Dirichlet series as a Fourier transform.
The restriction of the divisors in the convolution to unitary, bi-unitary or infinitary divisors defines similar commutative operations which share many features with the Dirichlet convolution (existence of a Möbius inversion, persistence of multiplicativity, definitions of totients, Euler-type product formulas over associated primes, etc.).
Dirichlet convolution is a special case of the convolution multiplication for the incidence algebra of a poset, in this case the poset of positive integers ordered by divisibility.
The Dirichlet hyperbola method computes the summation of a convolution in terms of its functions and their summation functions.
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime.
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted .
In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the term "multiplicative function" is often taken to be synonymous with "completely multiplicative function" as defined in this article.
In mathematics, the Weil pairing is a pairing on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual. It was introduced by André Weil for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for elliptic functions were known, and can be expressed simply by use of the Weierstrass sigma function.
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell.
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
In number theory, the unit function is a completely multiplicative function on the positive integers defined as:
In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by
In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".
In mathematics, a Redheffer matrix, often denoted as studied by Redheffer (1977), is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix.
In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation . If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. See modular arithmetic for notation and terminology.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:
In mathematics, a greatest common divisor matrix is a matrix that may also be referred to as Smith's matrix. The study was initiated by H.J.S. Smith (1875). A new inspiration was begun from the paper of Bourque & Ligh (1992). This led to intensive investigations on singularity and divisibility of GCD type matrices. A brief review of papers on GCD type matrices before that time is presented in Haukkanen, Wang & Sillanpää (1997).