This article needs additional citations for verification .(December 2009) |
In number theory, the Mertens function is defined for all positive integers n as
where is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:
Less formally, is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.
The first 143 M(n) values are (sequence A002321 in the OEIS )
M(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 0 | −1 | −1 | −2 | −1 | −2 | −2 | −2 | −1 | −2 | |
12+ | −2 | −3 | −2 | −1 | −1 | −2 | −2 | −3 | −3 | −2 | −1 | −2 |
24+ | −2 | −2 | −1 | −1 | −1 | −2 | −3 | −4 | −4 | −3 | −2 | −1 |
36+ | −1 | −2 | −1 | 0 | 0 | −1 | −2 | −3 | −3 | −3 | −2 | −3 |
48+ | −3 | −3 | −3 | −2 | −2 | −3 | −3 | −2 | −2 | −1 | 0 | −1 |
60+ | −1 | −2 | −1 | −1 | −1 | 0 | −1 | −2 | −2 | −1 | −2 | −3 |
72+ | −3 | −4 | −3 | −3 | −3 | −2 | −3 | −4 | −4 | −4 | −3 | −4 |
84+ | −4 | −3 | −2 | −1 | −1 | −2 | −2 | −1 | −1 | 0 | 1 | 2 |
96+ | 2 | 1 | 1 | 1 | 1 | 0 | −1 | −2 | −2 | −3 | −2 | −3 |
108+ | −3 | −4 | −5 | −4 | −4 | −5 | −6 | −5 | −5 | −5 | −4 | −3 |
120+ | −3 | −3 | −2 | −1 | −1 | −1 | −1 | −2 | −2 | −1 | −2 | −3 |
132+ | −3 | −2 | −1 | −1 | −1 | −2 | −3 | −4 | −4 | −3 | −2 | −1 |
The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values
Because the Möbius function only takes the values −1, 0, and +1, the Mertens function moves slowly, and there is no x such that |M(x)| > x. H. Davenport [1] demonstrated that, for any fixed h,
uniformly in . This implies, for that
The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as , this puts a rather tight bound on its rate of growth. Here, O refers to big O notation.
The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that
Probabilistic evidence towards this conjecture is given by Nathan Ng. [2] In particular, Ng gives a conditional proof that the function has a limiting distribution on . That is, for all bounded Lipschitz continuous functions on the reals we have that
if one assumes various conjectures about the Riemann zeta function.
Using the Euler product, one finds that
where is the Riemann zeta function, and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains
where c > 1.
Conversely, one has the Mellin transform
which holds for .
A curious relation given by Mertens himself involving the second Chebyshev function is
Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:
Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation
where H(x) is the Heaviside step function, B are Bernoulli numbers, and all derivatives with respect to t are evaluated at t = 0.
There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form
where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (g, h) are related by the Fourier transform, such that
Another formula for the Mertens function is
where is the Farey sequence of order n.
This formula is used in the proof of the Franel–Landau theorem. [3]
M(n) is the determinant of the n × n Redheffer matrix, a (0, 1) matrix in which aij is 1 if either j is 1 or i divides j.
This formulation[ citation needed ] expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem, which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.
From [4] we have
Furthermore, from [5]
where is the totient summatory function.
Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function. Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x. [6] [7]
Person | Year | Limit |
---|---|---|
Mertens | 1897 | 104 |
von Sterneck | 1897 | 1.5×105 |
von Sterneck | 1901 | 5×105 |
von Sterneck | 1912 | 5×106 |
Neubauer | 1963 | 108 |
Cohen and Dress | 1979 | 7.8×109 |
Dress | 1993 | 1012 |
Lioen and van de Lune | 1994 | 1013 |
Kotnik and van de Lune | 2003 | 1014 |
Hurst | 2016 | 1016 |
The Mertens function for all integer values up to x may be computed in O(x log log x) time. A combinatorial algorithm has been developed incrementally starting in 1870 by Ernst Meissel, [8] Lehmer, [9] Lagarias-Miller-Odlyzko, [10] and Deléglise-Rivat [11] that computes isolated values of M(x) in O(x2/3(log log x)1/3) time; a further improvement by Harald Helfgott and Lola Thompson in 2021 improves this to O(x3/5(log x)3/5+ε), [12] and an algorithm by Lagarias and Odlyzko based on integrals of the Riemann zeta function achieves a running time of O(x1/2+ε). [13]
Ng notes that the Riemann hypothesis (RH) is equivalent to
for some positive constant . Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including
Known explicit upper bounds without assuming the RH are given by: [14]
It is possible to simplify the above expression into a less restrictive but illustrative form as:
The Möbius function μ(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).
In mathematics, the Mertens conjecture is the statement that the Mertens function is bounded by . Although now disproven, it had been shown to imply the Riemann hypothesis. It was conjectured by Thomas Joannes Stieltjes, in an 1885 letter to Charles Hermite, and again in print by Franz Mertens, and disproved by Andrew Odlyzko and Herman te Riele . It is a striking example of a mathematical conjecture proven false despite a large amount of computational evidence in its favor.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. That is, the number
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number
In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery that the pair correlation between pairs of zeros of the Riemann zeta function is