Mertens function

Last updated
Mertens function to n = 10000 Mertens.svg
Mertens function to n = 10000
Mertens function to n = 10000000 Mertens-big.svg
Mertens function to n = 10000000

In number theory, the Mertens function is defined for all positive integers n as

Contents

where is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

Less formally, is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.

The first 143 M(n) values are (sequence A002321 in the OEIS )

M(n)+0+1+2+3+4+5+6+7+8+9+10+11
0+10112122212
12+232112233212
24+221112344321
36+121001233323
48+333223322101
60+121110122123
72+343332344434
84+432112211012
96+211110122323
108+345445655543
120+332111122123
132+321112344321

The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values

2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... (sequence A028442 in the OEIS ).

Because the Möbius function only takes the values 1, 0, and +1, the Mertens function moves slowly, and there is no x such that |M(x)| > x. H. Davenport [1] demonstrated that, for any fixed h,

uniformly in . This implies, for that


The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as , this puts a rather tight bound on its rate of growth. Here, O refers to big O notation.

The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that

Probabilistic evidence towards this conjecture is given by Nathan Ng. [2] In particular, Ng gives a conditional proof that the function has a limiting distribution on . That is, for all bounded Lipschitz continuous functions on the reals we have that

if one assumes various conjectures about the Riemann zeta function.

Representations

As an integral

Using the Euler product, one finds that

where is the Riemann zeta function, and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains

where c > 1.

Conversely, one has the Mellin transform

which holds for .

A curious relation given by Mertens himself involving the second Chebyshev function is

Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:

Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation

where H(x) is the Heaviside step function, B are Bernoulli numbers, and all derivatives with respect to t are evaluated at t = 0.

There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form

where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (g, h) are related by the Fourier transform, such that

As a sum over Farey sequences

Another formula for the Mertens function is

where is the Farey sequence of order n.

This formula is used in the proof of the Franel–Landau theorem. [3]

As a determinant

M(n) is the determinant of the n × n Redheffer matrix, a (0, 1) matrix in which aij is 1 if either j is 1 or i divides j.

As a sum of the number of points under n-dimensional hyperboloids

This formulation[ citation needed ] expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem, which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.

Other properties

From [4] we have

Furthermore, from [5]

where is the Totient summatory function.

Calculation

Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function. Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x. [6] [7]

PersonYearLimit
Mertens1897104
von Sterneck18971.5×105
von Sterneck19015×105
von Sterneck19125×106
Neubauer1963108
Cohen and Dress19797.8×109
Dress19931012
Lioen and van de Lune19941013
Kotnik and van de Lune20031014
Hurst20161016

The Mertens function for all integer values up to x may be computed in O(x log log x) time. A combinatorial algorithm has been developed incrementally starting in 1870 by Ernst Meissel, [8] Lehmer, [9] Lagarias-Miller-Odlyzko, [10] and Deléglise-Rivat [11] that computes isolated values of M(x) in O(x2/3(log log x)1/3) time; a further improvement by Harald Helfgott and Lola Thompson in 2021 improves this to O(x3/5(log x)3/5+ε), [12] and an algorithm by Lagarias and Odlyzko based on integrals of the Riemann zeta function achieves a running time of O(x1/2+ε). [13]

See OEIS:  A084237 for values of M(x) at powers of 10.

Known upper bounds

Ng notes that the Riemann hypothesis (RH) is equivalent to

for some positive constant . Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including

Known explicit upper bounds without assuming the RH are given by: [14]

It is possible to simplify the above expression into a less restrictive but illustrative form as:


Other explicit upper bounds are given by Kotnik (reference needed) as

See also

Notes

  1. Davenport, H. (November 1937). "ON SOME INFINITE SERIES INVOLVING ARITHMETICAL FUNCTIONS (II)". The Quarterly Journal of Mathematics. Original Series. 8 (1): 313–320. doi:10.1093/qmath/os-8.1.313.
  2. Nathan Ng (October 25, 2018). "The distribution of the summatory function of the Mobius function". arXiv: math/0310381 .
  3. Edwards, Ch. 12.2.
  4. Lehman, R.S. (1960). "On Liouville's Function". Math. Comput. 14: 311–320.
  5. Kanemitsu, S.; Yoshimoto, M. (1996). "Farey series and the Riemann hypothesis". Acta Arithmetica. 75 (4): 351–374. doi: 10.4064/aa-75-4-351-374 .
  6. Kotnik, Tadej; van de Lune, Jan (November 2003). "Further systematic computations on the summatory function of the Möbius function". Modelling, Analysis and Simulation. MAS-R0313.{{cite web}}: Missing or empty |url= (help)
  7. Hurst, Greg (2016). "Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture". arXiv: 1610.08551 [math.NT].
  8. Meissel, Ernst (1870). "Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen". Mathematische Annalen (in German). 2 (4): 636–642. doi:10.1007/BF01444045. ISSN   0025-5831. S2CID   119828499.
  9. Lehmer, Derrick Henry (April 1, 1958). "ON THE EXACT NUMBER OF PRIMES LESS THAN A GIVEN LIMIT". Illinois J. Math. 3 (3): 381–388. Retrieved February 1, 2017.
  10. Lagarias, Jeffrey; Miller, Victor; Odlyzko, Andrew (April 11, 1985). "Computing : The Meissel–Lehmer method" (PDF). Mathematics of Computation. 44 (170): 537–560. doi: 10.1090/S0025-5718-1985-0777285-5 . Retrieved September 13, 2016.
  11. Rivat, Joöl; Deléglise, Marc (1996). "Computing the summation of the Möbius function". Experimental Mathematics. 5 (4): 291–295. doi:10.1080/10586458.1996.10504594. ISSN   1944-950X. S2CID   574146.
  12. Helfgott, Harald; Thompson, Lola (2023). "Summing : a faster elementary algorithm". Research in Number Theory. 9 (1): 6. doi:10.1007/s40993-022-00408-8. ISSN   2363-9555. PMC   9731940 . PMID   36511765.
  13. Lagarias, Jeffrey; Odlyzko, Andrew (June 1987). "Computing : An analytic method". Journal of Algorithms. 8 (2): 173–191. doi:10.1016/0196-6774(87)90037-X.
  14. El Marraki, M. (1995). "Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes". Journal de théorie des nombres de Bordeaux. 7 (2).

Related Research Articles

The Möbius function μ(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

<span class="mw-page-title-main">Mertens conjecture</span> Disproved mathematical conjecture

In mathematics, the Mertens conjecture is the statement that the Mertens function is bounded by . Although now disproven, it had been shown to imply the Riemann hypothesis. It was conjectured by Thomas Joannes Stieltjes, in an 1885 letter to Charles Hermite, and again in print by Franz Mertens (1897), and disproved by Andrew Odlyzko and Herman te Riele (1985). It is a striking example of a mathematical conjecture proven false despite a large amount of computational evidence in its favor.

In mathematics, a Dirichlet series is any series of the form

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted ζ(s) and is named after the mathematician Bernhard Riemann. When the argument s is a real number greater than one, the zeta function satisfies the equation

<span class="mw-page-title-main">Divisor summatory function</span>

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

<span class="mw-page-title-main">Montgomery's pair correlation conjecture</span>

In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery (1973) that the pair correlation between pairs of zeros of the Riemann zeta function is

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

References