Totient summatory function Last updated February 10, 2025 • 1 min read From Wikipedia, The Free Encyclopedia Arithmetic function
In number theory , the totient summatory function Φ ( n ) {\displaystyle \Phi (n)} is a summatory function of Euler's totient function defined by
Φ ( n ) := ∑ k = 1 n φ ( k ) , n ∈ N . {\displaystyle \Phi (n):=\sum _{k=1}^{n}\varphi (k),\quad n\in \mathbb {N} .} It is the number of ordered pairs of coprime integers (p ,q ) , where 1 ≤ p ≤ q ≤ n .
The first few values are 0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, ... (sequence A002088 in the OEIS ) . Values for powers of 10 are 1, 32, 3044, 304192, 30397486, 3039650754, ... (sequence A064018 in the OEIS ) .
Properties Applying Möbius inversion to the totient function yields
Φ ( n ) = ∑ k = 1 n k ∑ d ∣ k μ ( d ) d = 1 2 ∑ k = 1 n μ ( k ) ⌊ n k ⌋ ( 1 + ⌊ n k ⌋ ) . {\displaystyle \Phi (n)=\sum _{k=1}^{n}k\sum _{d\mid k}{\frac {\mu (d)}{d}}={\frac {1}{2}}\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor \left(1+\left\lfloor {\frac {n}{k}}\right\rfloor \right).} Φ(n ) has the asymptotic expansion
Φ ( n ) ∼ 1 2 ζ ( 2 ) n 2 + O ( n log n ) = 3 π 2 n 2 + O ( n log n ) , {\displaystyle \Phi (n)\sim {\frac {1}{2\zeta (2)}}n^{2}+O\left(n\log n\right)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n\log n\right),} where ζ(2) is the Riemann zeta function evaluated at 2, which is π 2 6 {\displaystyle {\frac {\pi ^{2}}{6}}} . [ 1]
Reciprocal totient summatory function The summatory function of the reciprocal of the totient is
S ( n ) := ∑ k = 1 n 1 φ ( k ) . {\displaystyle S(n):=\sum _{k=1}^{n}{\frac {1}{\varphi (k)}}.} Edmund Landau showed in 1900 that this function has the asymptotic behavior[ citation needed ]
S ( n ) ∼ A ( γ + log n ) + B + O ( log n n ) , {\displaystyle S(n)\sim A(\gamma +\log n)+B+O\left({\frac {\log n}{n}}\right),} where γ is the Euler–Mascheroni constant ,
A = ∑ k = 1 ∞ μ ( k ) 2 k φ ( k ) = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = ∏ p ∈ P ( 1 + 1 p ( p − 1 ) ) , {\displaystyle A=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}}{k\varphi (k)}}={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}=\prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p(p-1)}}\right),} and
B = ∑ k = 1 ∞ μ ( k ) 2 log k k φ ( k ) = A ∏ p ∈ P ( log p p 2 − p + 1 ) . {\displaystyle B=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}\log k}{k\,\varphi (k)}}=A\,\prod _{p\in \mathbb {P} }\left({\frac {\log p}{p^{2}-p+1}}\right).} The constant A = 1.943596... is sometimes known as Landau's totient constant . The sum ∑ k = 1 ∞ 1 / ( k φ ( k ) ) {\displaystyle \textstyle \sum _{k=1}^{\infty }1/(k\;\varphi (k))} converges to
∑ k = 1 ∞ 1 k φ ( k ) = ζ ( 2 ) ∏ p ∈ P ( 1 + 1 p 2 ( p − 1 ) ) = 2.20386 … . {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k\varphi (k)}}=\zeta (2)\prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p^{2}(p-1)}}\right)=2.20386\ldots .} In this case, the product over the primes in the right side is a constant known as the totient summatory constant , [ 2] and its value is
∏ p ∈ P ( 1 + 1 p 2 ( p − 1 ) ) = 1.339784 … . {\displaystyle \prod _{p\in \mathbb {P} }\left(1+{\frac {1}{p^{2}(p-1)}}\right)=1.339784\ldots .} This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.