Euler product

Last updated

In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function.

Contents

Definition

In general, if a is a bounded multiplicative function, then the Dirichlet series

is equal to

where the product is taken over prime numbers p, and P(p, s) is the sum

In fact, if we consider these as formal generating functions, the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be multiplicative: this says exactly that a(n) is the product of the a(pk) whenever n factors as the product of the powers pk of distinct primes p.

An important special case is that in which a(n) is totally multiplicative, so that P(p, s) is a geometric series. Then

as is the case for the Riemann zeta function, where a(n) = 1, and more generally for Dirichlet characters.

Convergence

In practice all the important cases are such that the infinite series and infinite product expansions are absolutely convergent in some region

that is, in some right half-plane in the complex numbers. This already gives some information, since the infinite product, to converge, must give a non-zero value; hence the function given by the infinite series is not zero in such a half-plane.

In the theory of modular forms it is typical to have Euler products with quadratic polynomials in the denominator here. The general Langlands philosophy includes a comparable explanation of the connection of polynomials of degree m, and the representation theory for GLm.

Examples

The following examples will use the notation for the set of all primes, that is:

The Euler product attached to the Riemann zeta function ζ(s), also using the sum of the geometric series, is

while for the Liouville function λ(n) = (−1)ω(n), it is

Using their reciprocals, two Euler products for the Möbius function μ(n) are

and

Taking the ratio of these two gives

Since for even values of s the Riemann zeta function ζ(s) has an analytic expression in terms of a rational multiple of πs, then for even exponents, this infinite product evaluates to a rational number. For example, since ζ(2) = π2/6, ζ(4) = π4/90, and ζ(8) = π8/9450, then

and so on, with the first result known by Ramanujan. This family of infinite products is also equivalent to

where ω(n) counts the number of distinct prime factors of n, and 2ω(n) is the number of square-free divisors.

If χ(n) is a Dirichlet character of conductor N, so that χ is totally multiplicative and χ(n) only depends on n mod N, and χ(n) = 0 if n is not coprime to N, then

Here it is convenient to omit the primes p dividing the conductor N from the product. In his notebooks, Ramanujan generalized the Euler product for the zeta function as

for s > 1 where Lis(x) is the polylogarithm. For x = 1 the product above is just 1/ζ(s).

Notable constants

Many well known constants have Euler product expansions.

The Leibniz formula for π

can be interpreted as a Dirichlet series using the (unique) Dirichlet character modulo 4, and converted to an Euler product of superparticular ratios (fractions where numerator and denominator differ by 1):

where each numerator is a prime number and each denominator is the nearest multiple of 4. [1]

Other Euler products for known constants include:

and its reciprocal OEIS:  A065489 :

Notes

  1. Debnath, Lokenath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, p. 214, ISBN   9781848165267 .

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In mathematics, a Dirichlet series is any series of the form

In mathematics, a Dirichlet L-series is a function of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.

<span class="mw-page-title-main">Dirichlet beta function</span>

In mathematics, the Dirichlet beta function is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.

Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas, published by St Petersburg Academy in 1737.

In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by Glaisher (1891). It is defined as the following infinite series, which converges for :

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

In number theory, the totient summatory function is a summatory function of Euler's totient function defined by:

References