Additive function

Last updated

In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: [1]

Contents

f(ab) = f(a) + f(b).

Completely additive

An additive function f(n) is said to be completely additive if f(ab) = f(a) + f(b) holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.

Every completely additive function is additive, but not vice versa.

Examples

Examples of arithmetic functions which are completely additive are:

a0(4) = 2 + 2 = 4
a0(20) = a0(22 · 5) = 2 + 2 + 5 = 9
a0(27) = 3 + 3 + 3 = 9
a0(144) = a0(24 · 32) = a0(24) + a0(32) = 8 + 6 = 14
a0(2000) = a0(24 · 53) = a0(24) + a0(53) = 8 + 15 = 23
a0(2003) = 2003
a0(54,032,858,972,279) = 1240658
a0(54,032,858,972,302) = 1780417
a0(20,802,650,704,327,415) = 1240681
Ω(1) = 0, since 1 has no prime factors
Ω(4) = 2
Ω(16) = Ω(2·2·2·2) = 4
Ω(20) = Ω(2·2·5) = 3
Ω(27) = Ω(3·3·3) = 3
Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6
Ω(2000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7
Ω(2001) = 3
Ω(2002) = 4
Ω(2003) = 1
Ω(54,032,858,972,279) = 3
Ω(54,032,858,972,302) = 6
Ω(20,802,650,704,327,415) = 7

Examples of arithmetic functions which are additive but not completely additive are:

ω(4) = 1
ω(16) = ω(24) = 1
ω(20) = ω(22 · 5) = 2
ω(27) = ω(33) = 1
ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2
ω(2000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2
ω(2001) = 3
ω(2002) = 4
ω(2003) = 1
ω(54,032,858,972,279) = 3
ω(54,032,858,972,302) = 5
ω(20,802,650,704,327,415) = 5
a1(1) = 0
a1(4) = 2
a1(20) = 2 + 5 = 7
a1(27) = 3
a1(144) = a1(24 · 32) = a1(24) + a1(32) = 2 + 3 = 5
a1(2000) = a1(24 · 53) = a1(24) + a1(53) = 2 + 5 = 7
a1(2001) = 55
a1(2002) = 33
a1(2003) = 2003
a1(54,032,858,972,279) = 1238665
a1(54,032,858,972,302) = 1780410
a1(20,802,650,704,327,415) = 1238677

Multiplicative functions

From any additive function f(n) it is easy to create a related multiplicative function g(n) i.e. with the property that whenever a and b are coprime we have:

g(ab) = g(a) × g(b).

One such example is g(n) = 2f(n).

Summatory functions

Given an additive function , let its summatory function be defined by . The average of is given exactly as

The summatory functions over can be expanded as where

The average of the function is also expressed by these functions as

There is always an absolute constant such that for all natural numbers ,

Let

Suppose that is an additive function with such that as ,

Then where is the Gaussian distribution function

Examples of this result related to the prime omega function and the numbers of prime divisors of shifted primes include the following for fixed where the relations hold for :

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

The Möbius function μ(n) is an important multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four.

Lambert series Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants C, α>0, such that

In number theory, the Erdős–Kac theorem, named after Paul Erdős and Mark Kac, and also known as the fundamental theorem of probabilistic number theory, states that if ω(n) is the number of distinct prime factors of n, then, loosely speaking, the probability distribution of

In optimization, a self-concordant function is a function for which

In number theory, the Lagarias arithmetic derivative, or number derivative, is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

Anatoly Karatsuba Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In mathematics, a submodular set function is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains.

Grunsky matrix

In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's Theorem is a special case of Szemerédi's Theorem for the case .

References

  1. Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. online

Further reading