Bell series

Last updated

In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell.

Contents

Given an arithmetic function and a prime , define the formal power series , called the Bell series of modulo as:

Two multiplicative functions can be shown to be identical if all of their Bell series are equal; this is sometimes called the uniqueness theorem: given multiplicative functions and , one has if and only if:

for all primes .

Two series may be multiplied (sometimes called the multiplication theorem): For any two arithmetic functions and , let be their Dirichlet convolution. Then for every prime , one has:

In particular, this makes it trivial to find the Bell series of a Dirichlet inverse.

If is completely multiplicative, then formally:

Examples

The following is a table of the Bell series of well-known arithmetic functions.

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<span class="mw-page-title-main">Convolution</span> Integral expressing the amount of overlap of one function as it is shifted over another

In mathematics, convolution is a mathematical operation on two functions that produces a third function that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result. The integral is evaluated for all values of shift, producing the convolution function.

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

The Möbius function μ(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.

In mathematics, a Dirichlet series is any series of the form

In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by C. Moreau (1872), counts the number of distinct necklaces of n colored beads chosen out of α available colors. The necklaces are assumed to be aperiodic, and counted up to rotation, but without flipping over. This counting function also describes, among other things, the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field.

In number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the term "multiplicative function" is often taken to be synonymous with "completely multiplicative function" as defined in this article.

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

Let be a positive integer. In number theory, the Jordan's totient function of a positive integer equals the number of -tuples of positive integers that are less than or equal to and that together with form a coprime set of integers.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:

References