In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. [1] This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [2] Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.
The earliest known reference to the sieve (Ancient Greek : κόσκινον Ἐρατοσθένους, kóskinon Eratosthénous) is in Nicomachus of Gerasa's Introduction to Arithmetic , [3] an early 2nd cent. CE book which attributes it to Eratosthenes of Cyrene, a 3rd cent. BCE Greek mathematician, though describing the sieving by odd numbers instead of by primes. [4]
One of a number of prime number sieves, it is one of the most efficient ways to find all of the smaller primes. It may be used to find primes in arithmetic progressions. [5]
Sift the Two's and Sift the Three's:
The Sieve of Eratosthenes.
When the multiples sublime,
The numbers that remain are Prime.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself.
To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method:
The main idea here is that every value given to p will be prime, because if it were composite it would be marked as a multiple of some other, smaller prime. Note that some of the numbers may be marked more than once (e.g., 15 will be marked both for 3 and 5).
As a refinement, it is sufficient to mark the numbers in step 3 starting from p2, as all the smaller multiples of p will have already been marked at that point. This means that the algorithm is allowed to terminate in step 4 when p2 is greater than n. [1]
Another refinement is to initially list odd numbers only, (3, 5, ..., n), and count in increments of 2p in step 3, thus marking only odd multiples of p. This actually appears in the original algorithm. [1] [4] This can be generalized with wheel factorization, forming the initial list only from numbers coprime with the first few primes and not just from odds (i.e., numbers coprime with 2), and counting in the correspondingly adjusted increments so that only such multiples of p are generated that are coprime with those small primes, in the first place. [7]
To find all the prime numbers less than or equal to 30, proceed as follows.
First, generate a list of integers from 2 to 30:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
The first number in the list is 2; cross out every 2nd number in the list after 2 by counting up from 2 in increments of 2 (these will be all the multiples of 2 in the list):
2 3456789101112131415161718192021222324252627282930
The next number in the list after 2 is 3; cross out every 3rd number in the list after 3 by counting up from 3 in increments of 3 (these will be all the multiples of 3 in the list):
2 3456789101112131415161718192021222324252627282930
The next number not yet crossed out in the list after 3 is 5; cross out every 5th number in the list after 5 by counting up from 5 in increments of 5 (i.e. all the multiples of 5):
2 3456789101112131415161718192021222324252627282930
The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every 7th number in the list after 7, but they are all already crossed out at this point, as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30. The numbers not crossed out at this point in the list are all the prime numbers below 30:
2 3 5 7 11 13 17 19 23 29
The sieve of Eratosthenes can be expressed in pseudocode, as follows: [8] [9]
algorithm Sieve of Eratosthenes isinput: an integer n > 1. output: all prime numbers from 2 through n. letA be an array of Boolean values, indexed by integers 2 to n, initially all set to true. fori = 2, 3, 4, ..., not exceeding √ndoifA[i] istrueforj = i2, i2+i, i2+2i, i2+3i, ..., not exceeding ndosetA[j] := falsereturn all i such that A[i] istrue.
This algorithm produces all primes not greater than n. It includes a common optimization, which is to start enumerating the multiples of each prime i from i2. The time complexity of this algorithm is O(n log log n), [9] provided the array update is an O(1) operation, as is usually the case.
As Sorenson notes, the problem with the sieve of Eratosthenes is not the number of operations it performs but rather its memory requirements. [9] For large n, the range of primes may not fit in memory; worse, even for moderate n, its cache use is highly suboptimal. The algorithm walks through the entire array A, exhibiting almost no locality of reference.
A solution to these problems is offered by segmented sieves, where only portions of the range are sieved at a time. [10] These have been known since the 1970s, and work as follows: [9] [11]
If Δ is chosen to be √n, the space complexity of the algorithm is O(√n), while the time complexity is the same as that of the regular sieve. [9]
For ranges with upper limit n so large that the sieving primes below √n as required by the page segmented sieve of Eratosthenes cannot fit in memory, a slower but much more space-efficient sieve like the pseudosquares prime sieve, developed by Jonathan P. Sorenson, can be used instead. [12]
An incremental formulation of the sieve [2] generates primes indefinitely (i.e., without an upper bound) by interleaving the generation of primes with the generation of their multiples (so that primes can be found in gaps between the multiples), where the multiples of each prime p are generated directly by counting up from the square of the prime in increments of p (or 2p for odd primes). The generation must be initiated only when the prime's square is reached, to avoid adverse effects on efficiency. It can be expressed symbolically under the dataflow paradigm as
primes = [2, 3, ...] \ [[p², p²+p, ...] for p in primes],
using list comprehension notation with \
denoting set subtraction of arithmetic progressions of numbers.
Primes can also be produced by iteratively sieving out the composites through divisibility testing by sequential primes, one prime at a time. It is not the sieve of Eratosthenes but is often confused with it, even though the sieve of Eratosthenes directly generates the composites instead of testing for them. Trial division has worse theoretical complexity than that of the sieve of Eratosthenes in generating ranges of primes. [2]
When testing each prime, the optimal trial division algorithm uses all prime numbers not exceeding its square root, whereas the sieve of Eratosthenes produces each composite from its prime factors only, and gets the primes "for free", between the composites. The widely known 1975 functional sieve code by David Turner [13] is often presented as an example of the sieve of Eratosthenes [7] but is actually a sub-optimal trial division sieve. [2]
The sieve of Eratosthenes is a popular way to benchmark computer performance. [14] The time complexity of calculating all primes below n in the random access machine model is O(n log log n) operations, a direct consequence of the fact that the prime harmonic series asymptotically approaches log log n. It has an exponential time complexity with regard to length of the input, though, which makes it a pseudo-polynomial algorithm. The basic algorithm requires O(n) of memory.
The bit complexity of the algorithm is O(n (log n) (log log n)) bit operations with a memory requirement of O(n). [15]
The normally implemented page segmented version has the same operational complexity of O(n log log n) as the non-segmented version but reduces the space requirements to the very minimal size of the segment page plus the memory required to store the base primes less than the square root of the range used to cull composites from successive page segments of size O(√n/log n).
A special (rarely, if ever, implemented) segmented version of the sieve of Eratosthenes, with basic optimizations, uses O(n) operations and O(√nlog log n/log n) bits of memory. [16] [17] [18]
Using big O notation ignores constant factors and offsets that may be very significant for practical ranges: The sieve of Eratosthenes variation known as the Pritchard wheel sieve [16] [17] [18] has an O(n) performance, but its basic implementation requires either a "one large array" algorithm which limits its usable range to the amount of available memory else it needs to be page segmented to reduce memory use. When implemented with page segmentation in order to save memory, the basic algorithm still requires about O(n/log n) bits of memory (much more than the requirement of the basic page segmented sieve of Eratosthenes using O(√n/log n) bits of memory). Pritchard's work reduced the memory requirement at the cost of a large constant factor. Although the resulting wheel sieve has O(n) performance and an acceptable memory requirement, it is not faster than a reasonably Wheel Factorized basic sieve of Eratosthenes for practical sieving ranges.
Euler's proof of the zeta product formula contains a version of the sieve of Eratosthenes in which each composite number is eliminated exactly once. [9] The same sieve was rediscovered and observed to take linear time by Gries & Misra (1978). [19] It, too, starts with a list of numbers from 2 to n in order. On each step the first element is identified as the next prime, is multiplied with each element of the list (thus starting with itself), and the results are marked in the list for subsequent deletion. The initial element and the marked elements are then removed from the working sequence, and the process is repeated:
[2] (3) 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 ... [3] (5) 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 ... [4] (7) 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 71 73 77 79 ... [5] (11) 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 ... [...]
Here the example is shown starting from odds, after the first step of the algorithm. Thus, on the kth step all the remaining multiples of the kth prime are removed from the list, which will thereafter contain only numbers coprime with the first k primes (cf. wheel factorization), so that the list will start with the next prime, and all the numbers in it below the square of its first element will be prime too.
Thus, when generating a bounded sequence of primes, when the next identified prime exceeds the square root of the upper limit, all the remaining numbers in the list are prime. [9] In the example given above that is achieved on identifying 11 as next prime, giving a list of all primes less than or equal to 80.
Note that numbers that will be discarded by a step are still used while marking the multiples in that step, e.g., for the multiples of 3 it is 3 × 3 = 9, 3 × 5 = 15, 3 × 7 = 21, 3 × 9 = 27, ..., 3 × 15 = 45, ..., so care must be taken dealing with this. [9]
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes or the number of storage locations it uses. An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm.
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem.
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) = 4.
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2n⌋ + 1 bits) is of the form
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy. Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called compositeness tests instead of primality tests.
In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:
The AKS primality test is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first one which is able to determine in polynomial time, whether a given number is prime or composite without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis. In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work.
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known. It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.
In number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it.
TWINKLE is a hypothetical integer factorization device described in 1999 by Adi Shamir and purported to be capable of factoring 512-bit integers. It is also a pun on the twinkling LEDs used in the device. Shamir estimated that the cost of TWINKLE could be as low as $5000 per unit with bulk production. TWINKLE has a successor named TWIRL which is more efficient.
In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers. 2-smooth numbers are simply the powers of 2, while 5-smooth numbers are also known as regular numbers.
In mathematics, the sieve of Atkin is a modern algorithm for finding all prime numbers up to a specified integer. Compared with the ancient sieve of Eratosthenes, which marks off multiples of primes, the sieve of Atkin does some preliminary work and then marks off multiples of squares of primes, thus achieving a better theoretical asymptotic complexity. It was created in 2003 by A. O. L. Atkin and Daniel J. Bernstein.
In computational number theory, a variety of algorithms make it possible to generate prime numbers efficiently. These are used in various applications, for example hashing, public-key cryptography, and search of prime factors in large numbers.
Wheel factorization is a method for generating a sequence of natural numbers by repeated additions, as determined by a number of the first few primes, so that the generated numbers are coprime with these primes, by construction.
In mathematics, the sieve of Sundaram is a variant of the sieve of Eratosthenes, a simple deterministic algorithm for finding all the prime numbers up to a specified integer. It was discovered by Indian student S. P. Sundaram in 1934.
In mathematics the Function Field Sieve is one of the most efficient algorithms to solve the Discrete Logarithm Problem (DLP) in a finite field. It has heuristic subexponential complexity. Leonard Adleman developed it in 1994 and then elaborated it together with M. D. Huang in 1999. Previous work includes the work of D. Coppersmith about the DLP in fields of characteristic two.
In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. It is especially suited to quick hand computation for small bounds.
primes=sieve[2..];sieve(p:nos)=p:sieve(remove(multsofp)nos);removem=filter(not.m);multsofpn=remnp==0
). But see also Peter Henderson, Morris, James Jr., A Lazy Evaluator, 1976, where we find the following, attributed to P. Quarendon: primeswrt[x;l]=ifcar[l]modx=0thenprimeswrt[x;cdr[l]]elsecons[car[l];primeswrt[x;cdr[l]]];primes[l]=cons[car[l];primes[primeswrt[car[l];cdr[l]]]];primes[integers[2]]
; the priority is unclear.