Chunking (division)

Last updated

In mathematics education at the primary school level, chunking (sometimes also called the partial quotients method) is an elementary approach for solving simple division questions by repeated subtraction. It is also known as the hangman method with the addition of a line separating the divisor, dividend, and partial quotients. [1] It has a counterpart in the grid method for multiplication as well.

In general, chunking is more flexible than the traditional method in that the calculation of quotient is less dependent on the place values. As a result, it is often considered to be a more intuitive, but a less systematic approach to divisions where the efficiency is highly dependent upon one's numeracy skills.

To calculate the whole number quotient of dividing a large number by a small number, the student repeatedly takes away "chunks" of the large number, where each "chunk" is an easy multiple (for example 100×, 10×, 5× 2×, etc.) of the small number, until the large number has been reduced to zero or the remainder is less than the small number itself. At the same time the student is generating a list of the multiples of the small number (i.e., partial quotients) that have so far been taken away, which when added up together would then become the whole number quotient itself.

For example, to calculate 132 ÷ 8, one might successively subtract 80, 40 and 8 to leave 4:

      132        80   (10 × 8)        --        52        40   ( 5 × 8)        --        12         8   ( 1 × 8)         --         4             --------         132 =  16 × 8 + 4

Because 10 + 5 + 1 = 16, 132 ÷ 8 is 16 with 4 remaining.

In the UK, this approach for elementary division sums has come into widespread classroom use in primary schools since the late 1990s, when the National Numeracy Strategy in its "numeracy hour" brought in a new emphasis on more free-form oral and mental strategies for calculations, rather than the rote learning of standard methods. [2]

Compared to the short division and long division methods that are traditionally taught, chunking may seem strange, unsystematic, and arbitrary. However, it is argued that chunking, rather than moving straight to short division, gives a better introduction to division, in part because the focus is always holistic, focusing throughout on the whole calculation and its meaning, rather than just rules for generating successive digits. The more freeform nature of chunking also means that it requires more genuine understanding rather than just the ability to follow a ritualised procedure to be successful. [3]

An alternative way of performing chunking involves the use of the standard long division tableau except that the partial quotients are stacked up on the top of each other above the long division sign, and that all numbers are spelled out in full. By allowing one to subtract more chunks than what one currently has, it is also possible to expand chunking into a fully bidirectional method as well.

Related Research Articles

<span class="mw-page-title-main">Arithmetic</span> Elementary branch of mathematics

Arithmetic is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.

<span class="mw-page-title-main">Euclidean algorithm</span> Algorithm for computing greatest common divisors

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

<span class="mw-page-title-main">Division (mathematics)</span> Arithmetic operation

Division is one of the four basic operations of arithmetic, the ways that numbers are combined to make new numbers. The other operations are addition, subtraction, and multiplication.

<span class="mw-page-title-main">Subtraction</span> One of the four basic arithmetic operations

Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3. While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.

<span class="mw-page-title-main">Napier's bones</span> 1617 device for calculating products and quotients

Napier's bones is a manually-operated calculating device created by John Napier of Merchiston, Scotland for the calculation of products and quotients of numbers. The method was based on lattice multiplication, and also called 'rabdology', a word invented by Napier. Napier published his version in 1617. printed in Edinburgh, dedicated to his patron Alexander Seton.

The D'Hondt method, also called the Jefferson method or the greatest divisors method, is a method for allocating seats in parliaments among federal states, or in party-list proportional representation systems. It belongs to the class of highest-averages methods.

The Webster method, also called the Sainte-Laguë method or the major fractions method, is a method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system.

In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps.

In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division.

<span class="mw-page-title-main">Method of complements</span> Method of subtraction

In mathematics and computing, the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (hardware) for addition throughout the whole range. For a given number of places half of the possible representations of numbers encode the positive numbers, the other half represents their respective additive inverses. The pairs of mutually additive inverse numbers are called complements. Thus subtraction of any number is implemented by adding its complement. Changing the sign of any number is encoded by generating its complement, which can be done by a very simple and efficient algorithm. This method was commonly used in mechanical calculators and is still used in modern computers. The generalized concept of the radix complement is also valuable in number theory, such as in Midy's theorem.

In mathematics, the lowest common denominator or least common denominator is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.

A check digit is a form of redundancy check used for error detection on identification numbers, such as bank account numbers, which are used in an application where they will at least sometimes be input manually. It is analogous to a binary parity bit used to check for errors in computer-generated data. It consists of one or more digits computed by an algorithm from the other digits in the sequence input.

A spigot algorithm is an algorithm for computing the value of a transcendental number that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required. The name comes from the sense of the word "spigot" for a tap or valve controlling the flow of a liquid. Spigot algorithms can be contrasted with algorithms that store and process complete numbers to produce successively more accurate approximations to the desired transcendental.

<span class="mw-page-title-main">Numerical differentiation</span> Use of numerical analysis to estimate derivatives of functions

In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or function subroutine using values of the function and perhaps other knowledge about the function.

<span class="mw-page-title-main">Elementary arithmetic</span> Numbers and the basic operations on them

In arithmetic, the elementary operations are addition, subtraction, multiplication, and division. They are operated on fractions and negative numbers, which can be represented on a number line.

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software.

The grid method of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school, this algorithm is sometimes called the grammar school method.

In arithmetic, short division is a division algorithm which breaks down a division problem into a series of easier steps. It is an abbreviated form of long division — whereby the products are omitted and the partial remainders are notated as superscripts.

In computing, data deduplication is a technique for eliminating duplicate copies of repeating data. Successful implementation of the technique can improve storage utilization, which may in turn lower capital expenditure by reducing the overall amount of storage media required to meet storage capacity needs. It can also be applied to network data transfers to reduce the number of bytes that must be sent.

References

  1. "Hangman Division (Partial Quotients)". YouTube .
  2. Gary Eason, Back to school for parents, BBC News, 13 February 2000.
  3. Anne Campbell, Gavin Fairbairn, Working with support in the classroom, SAGE, 2005; pp. 5960 via Google books

Further reading