In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps.
As in all division problems, one number, called the dividend, is divided by another, called the divisor, producing a result called the quotient. It enables computations involving arbitrarily large numbers to be performed by following a series of simple steps. [1] The abbreviated form of long division is called short division, which is almost always used instead of long division when the divisor has only one digit.
Related algorithms have existed since the 12th century. [2] Al-Samawal al-Maghribi (1125–1174) performed calculations with decimal numbers that essentially require long division, leading to infinite decimal results, but without formalizing the algorithm. [3] Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
The examples and perspective in this article may not represent a worldwide view of the subject.(May 2024) |
Inexpensive calculators and computers have become the most common way to solve division problems, eliminating a traditional mathematical exercise and decreasing the educational opportunity to show how to do so by paper and pencil techniques. (Internally, those devices use one of a variety of division algorithms, the faster of which rely on approximations and multiplications to achieve the tasks.) In North America, long division has been especially targeted for de-emphasis or even elimination from the school curriculum by reform mathematics, though it has been traditionally introduced in the 4th, 5th or even 6th grades. [6]
In English-speaking countries, long division does not use the division slash ⟨ ∕ ⟩ or division sign ⟨÷⟩ symbols but instead constructs a tableau. [7] The divisor is separated from the dividend by a right parenthesis ⟨ ) ⟩ or vertical bar ⟨ | ⟩; the dividend is separated from the quotient by a vinculum (i.e., an overbar). The combination of these two symbols is sometimes known as a long division symbol or division bracket. [8] It developed in the 18th century from an earlier single-line notation separating the dividend from the quotient by a left parenthesis. [9] [10]
The process is begun by dividing the left-most digit of the dividend by the divisor. The quotient (rounded down to an integer) becomes the first digit of the result, and the remainder is calculated (this step is notated as a subtraction). This remainder carries forward when the process is repeated on the following digit of the dividend (notated as 'bringing down' the next digit to the remainder). When all digits have been processed and no remainder is left, the process is complete.
An example is shown below, representing the division of 500 by 4 (with a result of 125).
125 (Explanations) 4)500 4 ( 4 ×1 = 4) 10 ( 5 - 4 = 1) 8 ( 4 ×2 = 8) 20 (10 - 8 = 2) 20 ( 4 ×5 = 20) 0 (20 - 20 = 0)
A more detailed breakdown of the steps goes as follows:
If the last remainder when we ran out of dividend digits had been something other than 0, there would have been two possible courses of action:
31.75 4)127.00 12 (12 ÷ 4 = 3) 07 (0 remainder, bring down next figure) 4 (7 ÷ 4 = 1 r 3) 3.0 (bring down 0 and the decimal point) 2.8 (7 × 4 = 28, 30 ÷ 4 = 7 r 2) 20 (an additional zero is brought down) 20 (5 × 4 = 20) 0
In this example, the decimal part of the result is calculated by continuing the process beyond the units digit, "bringing down" zeros as being the decimal part of the dividend.
This example also illustrates that, at the beginning of the process, a step that produces a zero can be omitted. Since the first digit 1 is less than the divisor 4, the first step is instead performed on the first two digits 12. Similarly, if the divisor were 13, one would perform the first step on 127 rather than 12 or 1.
The basic presentation of the steps of the process (above) focus on the what steps are to be performed, rather than the properties of those steps that ensure the result will be correct (specifically, that q × m + r = n, where q is the final quotient and r the final remainder). A slight variation of presentation requires more writing, and requires that we change, rather than just update, digits of the quotient, but can shed more light on why these steps actually produce the right answer by allowing evaluation of q × m + r at intermediate points in the process. This illustrates the key property used in the derivation of the algorithm (below).
Specifically, we amend the above basic procedure so that we fill the space after the digits of the quotient under construction with 0's, to at least the 1's place, and include those 0's in the numbers we write below the division bracket.
This lets us maintain an invariant relation at every step: q × m + r = n, where q is the partially-constructed quotient (above the division bracket) and r the partially-constructed remainder (bottom number below the division bracket). Note that, initially q=0 and r=n, so this property holds initially; the process reduces r and increases q with each step, eventually stopping when r<m if we seek the answer in quotient + integer remainder form.
Revisiting the 500 ÷ 4 example above, we find
125 (q, changes from 000 to 100 to 120 to 125 as per notes below) 4)500 400 ( 4 ×100 = 400) 100 (500 - 400 = 100; now q=100, r=100; note q×4+r = 500.) 80 ( 4 ×20 = 80) 20 (100 - 80 = 20; now q=120, r= 20; note q×4+r = 500.) 20 ( 4 ×5 = 20) 0 ( 20 - 20 = 0; now q=125, r= 0; note q×4+r = 500.)
A divisor of any number of digits can be used. In this example, 1260257 is to be divided by 37. First the problem is set up as follows:
37)1260257
Digits of the number 1260257 are taken until a number greater than or equal to 37 occurs. So 1 and 12 are less than 37, but 126 is greater. Next, the greatest multiple of 37 less than or equal to 126 is computed. So 3 × 37 = 111 < 126, but 4 × 37 > 126. The multiple 111 is written underneath the 126 and the 3 is written on the top where the solution will appear:
3 37)1260257 111
Note carefully which place-value column these digits are written into. The 3 in the quotient goes in the same column (ten-thousands place) as the 6 in the dividend 1260257, which is the same column as the last digit of 111.
The 111 is then subtracted from the line above, ignoring all digits to the right:
3 37)1260257 111 15
Now the digit from the next smaller place value of the dividend is copied down and appended to the result 15:
3 37)1260257 111 150
The process repeats: the greatest multiple of 37 less than or equal to 150 is subtracted. This is 148 = 4 × 37, so a 4 is added to the top as the next quotient digit. Then the result of the subtraction is extended by another digit taken from the dividend:
34 37)1260257 111 150 148 22
The greatest multiple of 37 less than or equal to 22 is 0 × 37 = 0. Subtracting 0 from 22 gives 22, we often don't write the subtraction step. Instead, we simply take another digit from the dividend:
340 37)1260257 111 150 148 225
The process is repeated until 37 divides the last line exactly:
34061 37)1260257 111 150 148 225 222 37
For non-decimal currencies (such as the British £sd system before 1971) and measures (such as avoirdupois) mixed mode division must be used. Consider dividing 50 miles 600 yards into 37 pieces:
mi - yd - ft - in 1 - 634 1 9 r. 15" 37) 50 - 600 - 0 - 0 372288066348 13 23480 66 348 176022237333 22880 128 29 15 ===== 111 348 == 170 ===14822 66 ==
Each of the four columns is worked in turn. Starting with the miles: 50/37 = 1 remainder 13. No further division is possible, so perform a long multiplication by 1,760 to convert miles to yards, the result is 22,880 yards. Carry this to the top of the yards column and add it to the 600 yards in the dividend giving 23,480. Long division of 23,480 / 37 now proceeds as normal yielding 634 with remainder 22. The remainder is multiplied by 3 to get feet and carried up to the feet column. Long division of the feet gives 1 remainder 29 which is then multiplied by twelve to get 348 inches. Long division continues with the final remainder of 15 inches being shown on the result line.
When the quotient is not an integer and the division process is extended beyond the decimal point, one of two things can happen:
This section has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
China, Japan, Korea use the same notation as English-speaking nations including India. Elsewhere, the same general principles are used, but the figures are often arranged differently.
In Latin America (except Argentina, Bolivia, Mexico, Colombia, Paraguay, Venezuela, Uruguay and Brazil), the calculation is almost exactly the same, but is written down differently as shown below with the same two examples used above. Usually the quotient is written under a bar drawn under the divisor. A long vertical line is sometimes drawn to the right of the calculations.
500 ÷ 4 = 125 (Explanations) 4 ( 4 ×1 = 4) 10 ( 5 - 4 = 1) 8 ( 4 ×2 = 8) 20 (10 - 8 = 2) 20 ( 4 ×5 = 20) 0 (20 - 20 = 0)
and
127 ÷ 4 = 31.75 124 30 (bring down 0; decimal to quotient) 28 (7 × 4 = 28) 20 (an additional zero is added) 20 (5 × 4 = 20) 0
In Mexico, the English-speaking world notation is used, except that only the result of the subtraction is annotated and the calculation is done mentally, as shown below:
125 (Explanations) 4)500 10 ( 5 - 4 = 1) 20 (10 - 8 = 2) 0 (20 - 20 = 0)
In Bolivia, Brazil, Paraguay, Venezuela, French-speaking Canada, Colombia, and Peru, the European notation (see below) is used, except that the quotient is not separated by a vertical line, as shown below:
127|4 −124 31,75 30 −28 20 −20 0
Same procedure applies in Mexico, Uruguay and Argentina, only the result of the subtraction is annotated and the calculation is done mentally.
In Spain, Italy, France, Portugal, Lithuania, Romania, Turkey, Greece, Belgium, Belarus, Ukraine, and Russia, the divisor is to the right of the dividend, and separated by a vertical bar. The division also occurs in the column, but the quotient (result) is written below the divider, and separated by the horizontal line. The same method is used in Iran, Vietnam, and Mongolia.
127|4 −124|31,75 30 −28 20 −20 0
In Cyprus, as well as in France, a long vertical bar separates the dividend and subsequent subtractions from the quotient and divisor, as in the example below of 6359 divided by 17, which is 374 with a remainder of 1.
6359|17 −51 |374 125 | −119 | 69| −68| 1|
Decimal numbers are not divided directly, the dividend and divisor are multiplied by a power of ten so that the division involves two whole numbers. Therefore, if one were dividing 12,7 by 0,4 (commas being used instead of decimal points), the dividend and divisor would first be changed to 127 and 4, and then the division would proceed as above.
In Austria, Germany and Switzerland, the notational form of a normal equation is used. <dividend> : <divisor> = <quotient>, with the colon ":" denoting a binary infix symbol for the division operator (analogous to "/" or "÷"). In these regions the decimal separator is written as a comma. (cf. first section of Latin American countries above, where it's done virtually the same way):
127 : 4 = 31,75 −12 07 −4 30 −28 20 −20 0
The same notation is adopted in Denmark, Norway, Bulgaria, North Macedonia, Poland, Croatia, Slovenia, Hungary, Czech Republic, Slovakia, Vietnam and in Serbia.
In the Netherlands, the following notation is used:
12 / 135 \ 11,25 12 15 12 30 24 60 60 0
In Finland, the Italian method detailed above was replaced by the Anglo-American one in the 1970s. In the early 2000s, however, some textbooks have adopted the German method as it retains the order between the divisor and the dividend. [11]
Every natural number can be uniquely represented in an arbitrary number base as a sequence of digits where for all , where is the number of digits in . The value of in terms of its digits and the base is
Let be the dividend and be the divisor, where is the number of digits in . If , then quotient and remainder . Otherwise, we iterate from , before stopping.
For each iteration , let be the quotient extracted so far, be the intermediate dividend, be the intermediate remainder, be the next digit of the original dividend, and be the next digit of the quotient. By definition of digits in base , . By definition of remainder, . All values are natural numbers. We initiate
the first digits of .
With every iteration, the three equations are true:
There only exists one such such that .
According to the definition of the remainder ,
For the left side of the inequality, we select the largest such that
There is always a largest such , because and if , then
but because , , , this is always true. For the right side of the inequality we assume there exists a smallest such that
Since this is the smallest that the inequality holds true, this must mean that for
which is exactly the same as the left side of the inequality. Thus, . As will always exist, so will equal to , and there is only one unique that is valid for the inequality. Thus we have proven the existence and uniqueness of .
The final quotient is and the final remainder is
In base 10, using the example above with and , the initial values and .
0 | 2 | 0 | |||
1 | 6 | 3 | |||
2 | 0 | 4 | |||
3 | 2 | 0 | |||
4 | 5 | 6 | |||
5 | 7 | 1 |
Thus, and .
In base 16, with and , the initial values are and .
0 | 4 | ||||
1 | 1 | 8 | |||
2 | 2 | ||||
3 | 4 | ||||
4 | 5 |
Thus, and .
If one doesn't have the addition, subtraction, or multiplication tables for base b memorised, then this algorithm still works if the numbers are converted to decimal and at the end are converted back to base b. For example, with the above example,
and
with . The initial values are and .
0 | 4 | ||||
1 | 1 | 8 | |||
2 | 2 | ||||
3 | 4 | ||||
4 | 5 |
Thus, and .
This algorithm can be done using the same kind of pencil-and-paper notations as shown in above sections.
d8f45 r. 5 12 ) f412df ea a1 90 112 10e 4d 48 5f 5a 5
If the quotient is not constrained to be an integer, then the algorithm does not terminate for . Instead, if then by definition. If the remainder is equal to zero at any iteration, then the quotient is a -adic fraction, and is represented as a finite decimal expansion in base positional notation. Otherwise, it is still a rational number but not a -adic rational, and is instead represented as an infinite repeating decimal expansion in base positional notation.
On each iteration, the most time-consuming task is to select . We know that there are possible values, so we can find using comparisons. Each comparison will require evaluating . Let be the number of digits in the dividend and be the number of digits in the divisor . The number of digits in . The multiplication of is therefore , and likewise the subtraction of . Thus it takes to select . The remainder of the algorithm are addition and the digit-shifting of and to the left one digit, and so takes time and in base , so each iteration takes , or just . For all digits, the algorithm takes time , or in base .
Long division of integers can easily be extended to include non-integer dividends, as long as they are rational. This is because every rational number has a recurring decimal expansion. The procedure can also be extended to include divisors which have a finite or terminating decimal expansion (i.e. decimal fractions). In this case the procedure involves multiplying the divisor and dividend by the appropriate power of ten so that the new divisor is an integer – taking advantage of the fact that a ÷ b = (ca) ÷ (cb) – and then proceeding as above.
A generalised version of this method called polynomial long division is also used for dividing polynomials (sometimes using a shorthand version called synthetic division).
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.
In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that
In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows:
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer by another, in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder exist and are unique, under some conditions. Because of this uniqueness, Euclidean division is often considered without referring to any method of computation, and without explicitly computing the quotient and the remainder. The methods of computation are called integer division algorithms, the best known of which being long division.
In mathematics, the Smith normal form is a normal form that can be defined for any matrix with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.
In mathematics, Grönwall's inequality allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form. For the latter there are several variants.
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.
In mathematics, the Eisenstein integers, occasionally also known as Eulerian integers, are the complex numbers of the form
The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that
A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
In arithmetic, short division is a division algorithm which breaks down a division problem into a series of easier steps. It is an abbreviated form of long division — whereby the products are omitted and the partial remainders are notated as superscripts.
William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used.
In coding theory, list decoding is an alternative to unique decoding of error-correcting codes in the presence of many errors. If a code has relative distance , then it is possible in principle to recover an encoded message when up to fraction of the codeword symbols are corrupted. But when error rate is greater than , this will not in general be possible. List decoding overcomes that issue by allowing the decoder to output a short list of messages that might have been encoded. List decoding can correct more than fraction of errors.