In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.
The sum, difference, or product of any two dyadic rational numbers is another dyadic rational number, given by a simple formula. However, division of one dyadic rational number by another does not always produce a dyadic rational result. Mathematically, this means that the dyadic rational numbers form a ring, lying between the ring of integers and the field of rational numbers. This ring may be denoted .
In advanced mathematics, the dyadic rational numbers are central to the constructions of the dyadic solenoid, Minkowski's question-mark function, Daubechies wavelets, Thompson's group, Prüfer 2-group, surreal numbers, and fusible numbers. These numbers are order-isomorphic to the rational numbers; they form a subsystem of the 2-adic numbers as well as of the reals, and can represent the fractional parts of 2-adic numbers. Functions from natural numbers to dyadic rationals have been used to formalize mathematical analysis in reverse mathematics.
Many traditional systems of weights and measures are based on the idea of repeated halving, which produces dyadic rationals when measuring fractional amounts of units. The inch is customarily subdivided in dyadic rationals rather than using a decimal subdivision. [1] The customary divisions of the gallon into half-gallons, quarts, pints, and cups are also dyadic. [2] The ancient Egyptians used dyadic rationals in measurement, with denominators up to 64. [3] Similarly, systems of weights from the Indus Valley civilisation are for the most part based on repeated halving; anthropologist Heather M.-L. Miller writes that "halving is a relatively simple operation with beam balances, which is likely why so many weight systems of this time period used binary systems". [4]
Dyadic rationals are central to computer science as a type of fractional number that many computers can manipulate directly. [5] In particular, as a data type used by computers, floating-point numbers are often defined as integers multiplied by positive or negative powers of two. The numbers that can be represented precisely in a floating-point format, such as the IEEE floating-point datatypes, are called its representable numbers. For most floating-point representations, the representable numbers are a subset of the dyadic rationals. [6] The same is true for fixed-point datatypes, which also use powers of two implicitly in the majority of cases. [7] Because of the simplicity of computing with dyadic rationals, they are also used for exact real computing using interval arithmetic, [8] and are central to some theoretical models of computable numbers. [9] [10] [11]
Generating a random variable from random bits, in a fixed amount of time, is possible only when the variable has finitely many outcomes whose probabilities are all dyadic rational numbers. For random variables whose probabilities are not dyadic, it is necessary either to approximate their probabilities by dyadic rationals, or to use a random generation process whose time is itself random and unbounded. [12]
Time signatures in Western musical notation traditionally are written in a form resembling fractions (for example: 2
2, 4
4, or 6
8), [13] although the horizontal line of the musical staff that separates the top and bottom number is usually omitted when writing the signature separately from its staff. As fractions they are generally dyadic, [14] although non-dyadic time signatures have also been used. [15] The numeric value of the signature, interpreted as a fraction, describes the length of a measure as a fraction of a whole note. Its numerator describes the number of beats per measure, and the denominator describes the length of each beat. [13] [14]
In theories of childhood development of the concept of a fraction based on the work of Jean Piaget, fractional numbers arising from halving and repeated halving are among the earliest forms of fractions to develop. [16] This stage of development of the concept of fractions has been called "algorithmic halving". [17] Addition and subtraction of these numbers can be performed in steps that only involve doubling, halving, adding, and subtracting integers. In contrast, addition and subtraction of more general fractions involves integer multiplication and factorization to reach a common denominator. Therefore, dyadic fractions can be easier for students to calculate with than more general fractions. [18]
The dyadic numbers are the rational numbers that result from dividing an integer by a power of two. [9] A rational number in simplest terms is a dyadic rational when is a power of two. [19] Another equivalent way of defining the dyadic rationals is that they are the real numbers that have a terminating binary representation. [9]
Addition, subtraction, and multiplication of any two dyadic rationals produces another dyadic rational, according to the following formulas: [20]
However, the result of dividing one dyadic rational by another is not necessarily a dyadic rational. [21] For instance, 1 and 3 are both dyadic rational numbers, but 1/3 is not.
Every integer, and every half-integer, is a dyadic rational. [22] They both meet the definition of being an integer divided by a power of two: every integer is an integer divided by one (the zeroth power of two), and every half-integer is an integer divided by two.
Every real number can be arbitrarily closely approximated by dyadic rationals. In particular, for a real number , consider the dyadic rationals of the form , where can be any integer and denotes the floor function that rounds its argument down to an integer. These numbers approximate from below to within an error of , which can be made arbitrarily small by choosing to be arbitrarily large. For a fractal subset of the real numbers, this error bound is within a constant factor of optimal: for these numbers, there is no approximation with error smaller than a constant times . [23] [24] The existence of accurate dyadic approximations can be expressed by saying that the set of all dyadic rationals is dense in the real line. [22] More strongly, this set is uniformly dense, in the sense that the dyadic rationals with denominator are uniformly spaced on the real line. [9]
The dyadic rationals are precisely those numbers possessing finite binary expansions. [9] Their binary expansions are not unique; there is one finite and one infinite representation of each dyadic rational other than 0 (ignoring terminal 0s). For example, 0.112 = 0.10111...2, giving two different representations for 3/4. [9] [25] The dyadic rationals are the only numbers whose binary expansions are not unique. [9]
Because they are closed under addition, subtraction, and multiplication, but not division, the dyadic rationals are a ring but not a field. [26] The ring of dyadic rationals may be denoted , meaning that it can be generated by evaluating polynomials with integer coefficients, at the argument 1/2. [27] As a ring, the dyadic rationals are a subring of the rational numbers, and an overring of the integers. [28] Algebraically, this ring is the localization of the integers with respect to the set of powers of two. [29]
As well as forming a subring of the real numbers, the dyadic rational numbers form a subring of the 2-adic numbers, a system of numbers that can be defined from binary representations that are finite to the right of the binary point but may extend infinitely far to the left. The 2-adic numbers include all rational numbers, not just the dyadic rationals. Embedding the dyadic rationals into the 2-adic numbers does not change the arithmetic of the dyadic rationals, but it gives them a different topological structure than they have as a subring of the real numbers. As they do in the reals, the dyadic rationals form a dense subset of the 2-adic numbers, [30] and are the set of 2-adic numbers with finite binary expansions. Every 2-adic number can be decomposed into the sum of a 2-adic integer and a dyadic rational; in this sense, the dyadic rationals can represent the fractional parts of 2-adic numbers, but this decomposition is not unique. [31]
Addition of dyadic rationals modulo 1 (the quotient group of the dyadic rationals by the integers) forms the Prüfer 2-group. [32]
Considering only the addition and subtraction operations of the dyadic rationals gives them the structure of an additive abelian group. Pontryagin duality is a method for understanding abelian groups by constructing dual groups, whose elements are characters of the original group, group homomorphisms to the multiplicative group of the complex numbers, with pointwise multiplication as the dual group operation. The dual group of the additive dyadic rationals, constructed in this way, can also be viewed as a topological group. It is called the dyadic solenoid, and is isomorphic to the topological product of the real numbers and 2-adic numbers, quotiented by the diagonal embedding of the dyadic rationals into this product. [30] It is an example of a protorus, a solenoid, and an indecomposable continuum. [33]
Because they are a dense subset of the real numbers, the dyadic rationals, with their numeric ordering, form a dense order. As with any two unbounded countable dense linear orders, by Cantor's isomorphism theorem, [34] the dyadic rationals are order-isomorphic to the rational numbers. In this case, Minkowski's question-mark function provides an order-preserving bijection between the set of all rational numbers and the set of dyadic rationals. [35]
The dyadic rationals play a key role in the analysis of Daubechies wavelets, as the set of points where the scaling function of these wavelets is non-smooth. [26] Similarly, the dyadic rationals parameterize the discontinuities in the boundary between stable and unstable points in the parameter space of the Hénon map. [36]
The set of piecewise linear homeomorphisms from the unit interval to itself that have power-of-2 slopes and dyadic-rational breakpoints forms a group under the operation of function composition. This is Thompson's group, the first known example of an infinite but finitely presented simple group. [37] The same group can also be represented by an action on rooted binary trees, [38] or by an action on the dyadic rationals within the unit interval. [32]
In reverse mathematics, one way of constructing the real numbers is to represent them as functions from unary numbers to dyadic rationals, where the value of one of these functions for the argument is a dyadic rational with denominator that approximates the given real number. Defining real numbers in this way allows many of the basic results of mathematical analysis to be proven within a restricted theory of second-order arithmetic called "feasible analysis" (BTFA). [39]
The surreal numbers are generated by an iterated construction principle which starts by generating all finite dyadic rationals, and then goes on to create new and strange kinds of infinite, infinitesimal and other numbers. [40] This number system is foundational to combinatorial game theory, and dyadic rationals arise naturally in this theory as the set of values of certain combinatorial games. [41] [42] [19]
The fusible numbers are a subset of the dyadic rationals, the closure of the set under the operation , restricted to pairs with . They are well-ordered, with order type equal to the epsilon number . For each integer the smallest fusible number that is greater than has the form . The existence of for each cannot be proven in Peano arithmetic, [43] and grows so rapidly as a function of that for it is (in Knuth's up-arrow notation for large numbers) already larger than . [44]
The usual proof of Urysohn's lemma utilizes the dyadic fractions for constructing the separating function from the lemma.
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
An integer is the number zero (0), a positive natural number or a negative integer. The negative numbers are the additive inverses of the corresponding positive numbers. The set of all integers is often denoted by the boldface Z or blackboard bold .
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction, the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers are called the coefficients or terms of the continued fraction.
In mathematics, a (real) interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. An interval can contain neither endpoint, either endpoint, or both endpoints.
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right. Formally, given a prime number p, a p-adic number can be defined as a series
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.
In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow.
In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.
One half is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double.
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.
In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. It maps quadratic irrational numbers to rational numbers on the unit interval, via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the rationals, given by Arnaud Denjoy in 1938. It also maps rational numbers to dyadic rationals, as can be seen by a recursive definition closely related to the Stern–Brocot tree.
In mathematics, a half-integer is a number of the form
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.
Note that binary measures (2, 4, 8, 16) are very common indeed. This is particularly obvious with volumes.
Algebraic structure → Ring theory Ring theory |
---|