The **square root of 2**, or the **one-half power of 2**, written in mathematics as or , is the positive algebraic number that, when multiplied by itself, equals the number 2.^{ [1] } Technically, it must be called the **principal square root of 2**, to distinguish it from the negative number with the same property.

- History
- Ancient Roman architecture
- Decimal value
- Computation algorithms
- Rational approximations
- Records in computation
- Proofs of irrationality
- Proof by infinite descent
- Proof by unique factorization
- Geometric proof
- Constructive proof
- Proof by Diophantine equations
- Multiplicative inverse
- Properties
- Representations
- Series and product
- Continued fraction
- Nested square
- Applications
- Paper size
- Physical sciences
- See also
- Notes
- References
- External links

Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length;^{ [2] } this follows from the Pythagorean theorem. It was probably the first number known to be irrational.^{ [3] } The fraction 99/70 (≈ **1.4142**857) is sometimes used as a good rational approximation with a reasonably small denominator.

Sequence A002193 in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here truncated to 65 decimal places:^{ [4] }

- 1.41421356237309504880168872420969807856967187537694807317667973799

Binary | 1.01101010000010011110… |

Decimal | 1.4142135623730950488… |

Hexadecimal | 1.6A09E667F3BCC908B2F… |

Continued fraction |

The Babylonian clay tablet YBC 7289 (c. 1800–1600 BC) gives an approximation of √2 in four sexagesimal figures, 1 24 51 10, which is accurate to about six decimal digits,^{ [5] } and is the closest possible three-place sexagesimal representation of √2:

Another early approximation is given in ancient Indian mathematical texts, the Sulbasutras (c. 800–200 BC), as follows: *Increase the length [of the side] by its third and this third by its own fourth less the thirty-fourth part of that fourth.*^{ [6] } That is,

This approximation is the seventh in a sequence of increasingly accurate approximations based on the sequence of Pell numbers, which can be derived from the continued fraction expansion of √2. Despite having a smaller denominator, it is only slightly less accurate than the Babylonian approximation.

Pythagoreans discovered that the diagonal of a square is incommensurable with its side, or in modern language, that the square root of two is irrational. Little is known with certainty about the time or circumstances of this discovery, but the name of Hippasus of Metapontum is often mentioned. For a while, the Pythagoreans treated as an official secret the discovery that the square root of two is irrational, and, according to legend, Hippasus was murdered for divulging it.^{ [2] }^{ [7] }^{ [8] }^{ [9] } The square root of two is occasionally called **Pythagoras's number** or **Pythagoras's constant**, for example by Conway & Guy (1996).^{ [10] }

In ancient Roman architecture, Vitruvius describes the use of the square root of 2 progression or *ad quadratum* technique. It consists basically in a geometric, rather than arithmetic, method to double a square, in which the diagonal of the original square is equal to the side of the resulting square. Vitruvius attributes the idea to Plato. The system was employed to build pavements by creating a square tangent to the corners of the original square at 45 degrees of it. The proportion was also used to design atria by giving them a length equal to a diagonal taken from a square, whose sides are equivalent to the intended atrium's width.^{ [11] }

There are a number of algorithms for approximating √2 as a ratio of integers or as a decimal. The most common algorithm for this, which is used as a basis in many computers and calculators, is the Babylonian method ^{ [12] } for computing square roots, which is one of many methods of computing square roots. It goes as follows:

First, pick a guess, *a*_{0} > 0; the value of the guess affects only how many iterations are required to reach an approximation of a certain accuracy. Then, using that guess, iterate through the following recursive computation:

The more iterations through the algorithm (that is, the more computations performed and the greater "*n*"), the better the approximation. Each iteration roughly doubles the number of correct digits. Starting with *a*_{0} = 1, the results of the algorithm are as follows:

**1**(*a*_{0})- 3/2 =
**1**.5 (*a*_{1}) - 17/12 =
**1.41**6... (*a*_{2}) - 577/408 =
**1.41421**5... (*a*_{3}) - 665857/470832 =
**1.41421356237**46... (*a*_{4})

A simple rational approximation 99/70 (≈ **1.4142**857) is sometimes used. Despite having a denominator of only 70, it differs from the correct value by less than 1/10,000 (approx. +0.72×10^{−4}). Since it is a convergent of the continued fraction representation of the square root of two, any better rational approximation has a denominator not less than 169, since 239/169 (≈ 1.4142012) is the next convergent with an error of approx. −0.12×10^{−4}.

The rational approximation of the square root of two derived from four iterations of the Babylonian method after starting with *a*_{0} = 1 (665,857/470,832) is too large by about 1.6×10^{−12}; its square is ≈ 2.0000000000045.

In 1997 the value of √2 was calculated to 137,438,953,444 decimal places by Yasumasa Kanada's team. In February 2006 the record for the calculation of √2 was eclipsed with the use of a home computer. Shigeru Kondo calculated 1 trillion decimal places in 2010.^{ [13] } Among mathematical constants with computationally challenging decimal expansions, only π has been calculated more precisely.^{ [14] } Such computations aim to check empirically whether such numbers are normal.

This is a table of recent records in calculating the digits of √2.^{ [15] }

Date | Name | Number of digits |
---|---|---|

June 28, 2016 | Ron Watkins | 10 trillion |

April 3, 2016 | Ron Watkins | 5 trillion |

February 9, 2012 | Alexander Yee | 2 trillion |

March 22, 2010 | Shigeru Kondo | 1 trillion |

A short proof of the irrationality of √2 can be obtained from the rational root theorem, that is, if *p*(*x*) is a monic polynomial with integer coefficients, then any rational root of *p*(*x*) is necessarily an integer. Applying this to the polynomial *p*(*x*) = *x*^{2} − 2, it follows that √2 is either an integer or irrational. Because √2 is not an integer (2 is not a perfect square), √2 must therefore be irrational. This proof can be generalized to show that any square root of any natural number that is not the square of a natural number is irrational.

For a proof that the square root of any non-square natural number is irrational, see quadratic irrational or infinite descent.

One proof of the number's irrationality is the following proof by infinite descent. It is also a proof by contradiction, also known as an indirect proof, in that the proposition is proved by assuming that the opposite of the proposition is true and showing that this assumption is false, thereby implying that the proposition must be true.

- Assume that √2 is a rational number, meaning that there exists a pair of integers whose ratio is exactly √2.
- If the two integers have a common factor, it can be eliminated using the Euclidean algorithm.
- Then √2 can be written as an irreducible fraction
*a*/*b*such that*a*and*b*are coprime integers (having no common factor) which additionally means that at least one of*a*or*b*must be odd . - It follows that
*a*^{2}/*b*^{2}= 2 and*a*^{2}= 2*b*^{2}. ( (*a*/*b*)^{n}=*a*^{n}/*b*^{n}) (*a*^{2}and b^{2}*are integers)* - Therefore,
*a*^{2}is even because it is equal to 2*b*^{2}. (2*b*^{2}is necessarily even because it is 2 times another whole number and multiples of 2 are even.) - It follows that
*a*must be even (as squares of odd integers are never even). - Because
*a*is even, there exists an integer*k*that fulfills:*a*= 2*k*. - Substituting 2
*k*from step 7 for*a*in the second equation of step 4: 2*b*^{2}= (2*k*)^{2}is equivalent to 2*b*^{2}= 4*k*^{2}, which is equivalent to*b*^{2}= 2*k*^{2}. - Because 2
*k*^{2}is divisible by two and therefore even, and because 2*k*^{2}=*b*^{2}, it follows that*b*^{2}is also even which means that*b*is even. - By steps 5 and 8
*a*and*b*are both even, which contradicts that*a*/*b*is irreducible as stated in step 3.

**Q.E.D.**

Because there is a contradiction, the assumption (1) that √2 is a rational number must be false. This means that √2 is not a rational number. That is, √2 is irrational.

This proof was hinted at by Aristotle, in his * Analytica Priora *, §I.23.^{ [16] } It appeared first as a full proof in Euclid's * Elements *, as proposition 117 of Book X. However, since the early 19th century, historians have agreed that this proof is an interpolation and not attributable to Euclid.^{ [17] }

As with the proof by infinite descent, we obtain . Being the same quantity, each side has the same prime factorization by the fundamental theorem of arithmetic, and in particular, would have to have the factor 2 occur the same number of times. However, the factor 2 appears an odd number of times on the right, but an even number of times on the left—a contradiction.

A simple proof is attributed by John Horton Conway to Stanley Tennenbaum when the latter was a student in the early 1950s^{ [18] } and whose most recent appearance is in an article by Noson Yanofsky in the May–June 2016 issue of * American Scientist *.^{ [19] } Given two squares with integer sides respectively *a* and *b*, one of which has twice the area of the other, place two copies of the smaller square in the larger as shown in Figure 1. The square overlap region in the middle ((2*b* − *a*)^{2}) must equal the sum of the two uncovered squares (2(*a* − *b*)^{2}). However, these squares on the diagonal have positive integer sides that are smaller than the original squares. Repeating this process, there are arbitrarily small squares one twice the area of the other, yet both having positive integer sides, which is impossible since positive integers cannot be less than 1.

Another geometric reductio ad absurdum argument showing that √2 is irrational appeared in 2000 in the American Mathematical Monthly.^{ [20] } It is also an example of proof by infinite descent. It makes use of classic compass and straightedge construction, proving the theorem by a method similar to that employed by ancient Greek geometers. It is essentially the same algebraic proof as in the previous paragraph, viewed geometrically in another way.

Let △*ABC* be a right isosceles triangle with hypotenuse length *m* and legs *n* as shown in Figure 2. By the Pythagorean theorem, *m*/*n* = √2. Suppose *m* and *n* are integers. Let *m*:*n* be a ratio given in its lowest terms.

Draw the arcs *BD* and *CE* with centre *A*. Join *DE*. It follows that *AB* = *AD*, *AC* = *AE* and the ∠*BAC* and ∠*DAE* coincide. Therefore, the triangles *ABC* and *ADE* are congruent by SAS.

Because ∠*EBF* is a right angle and ∠*BEF* is half a right angle, △*BEF* is also a right isosceles triangle. Hence *BE* = *m* − *n* implies *BF* = *m* − *n*. By symmetry, *DF* = *m* − *n*, and △*FDC* is also a right isosceles triangle. It also follows that *FC* = *n* − (*m* − *n*) = 2*n* − *m*.

Hence, there is an even smaller right isosceles triangle, with hypotenuse length 2*n* − *m* and legs *m* − *n*. These values are integers even smaller than *m* and *n* and in the same ratio, contradicting the hypothesis that *m*:*n* is in lowest terms. Therefore, *m* and *n* cannot be both integers, hence √2 is irrational.

In a constructive approach, one distinguishes between on the one hand not being rational, and on the other hand being irrational (i.e., being quantifiably apart from every rational), the latter being a stronger property. Given positive integers *a* and *b*, because the valuation (i.e., highest power of 2 dividing a number) of 2*b*^{2} is odd, while the valuation of *a*^{2} is even, they must be distinct integers; thus |2*b*^{2} − *a*^{2}| ≥ 1. Then^{ [21] }

the latter inequality being true because it is assumed that *a*/*b* ≤ 3 − √2 (otherwise the quantitative apartness can be trivially established). This gives a lower bound of 1/3*b*^{2} for the difference |√2 − *a*/*b*|, yielding a direct proof of irrationality not relying on the law of excluded middle; see Errett Bishop (1985, p. 18). This proof constructively exhibits a discrepancy between √2 and any rational.

*Lemma*: For the Diophantine equation in its primitive (simplest) form, integer solutions exist if and only if either or is odd, but never when both and are odd.^{ [22] }

*Proof*: For the given equation, there are only six possible combinations of oddness and evenness for whole-number values of and that produce a whole-number value for . A simple enumeration of all six possibilities shows why four of these six are impossible. Of the two remaining possibilities, one can be proven to not contain any solutions using modular arithmetic, leaving the sole remaining possibility as the only one to contain solutions, if any.

x, y | z | |
---|---|---|

Both even | Even | Impossible. The given Diophantine equation is primitive and therefore contains no common factors throughout. |

Both odd | Odd | Impossible. The sum of two odd numbers does not produce an odd number. |

Both even | Odd | Impossible. The sum of two even numbers does not produce an odd number. |

One even, another odd | Even | Impossible. The sum of an even number and an odd number does not produce an even number. |

Both odd | Even | Possible |

One even, another odd | Odd | Possible |

The fifth possibility (both and odd and even) can be shown to contain no solutions as follows.

Since is even, must be divisible by , hence

The square of any odd number is always . The square of any even number is always . Since both and are odd and is even:

which is impossible. Therefore, the fifth possibility is also ruled out, leaving the sixth to be the only possible combination to contain solutions, if any.

**An extension of this lemma is the result that two identical whole-number squares can never be added to produce another whole-number square, even when the equation is not in its simplest form.**

*Theorem:*is irrational.

*Proof*: Assume is rational. Therefore,

- where
- Squaring both sides,

But the lemma proves that the sum of two identical whole-number squares cannot produce another whole-number square.

Therefore, the assumption that is rational is contradicted.

is irrational. ** Q. E. D. **

The multiplicative inverse (reciprocal) of the square root of two (i.e., the square root of 1/2) is a widely used constant.

- 0.70710678118654752440084436210484903928483593768847... (sequence A010503 in the OEIS )

One-half of √2, also the reciprocal of √2, is a common quantity in geometry and trigonometry because the unit vector that makes a 45° angle with the axes in a plane has the coordinates

This number satisfies

One interesting property of √2 is

since

This is related to the property of silver ratios.

√2 can also be expressed in terms of the copies of the imaginary unit *i* using only the square root and arithmetic operations, if the square root symbol is interpreted suitably for the complex numbers *i* and −*i*:

√2 is also the only real number other than 1 whose infinite tetrate (i.e., infinite exponential tower) is equal to its square. In other words: if for c > 1, *x*_{1} = *c* and *x*_{n+1} = *c*^{xn} for *n* > 1, the limit of *x*_{n} will be called as *n* → ∞ (if this limit exists) *f*(*c*). Then √2 is the only number *c* > 1 for which *f*(*c*) = *c*^{2}. Or symbolically:

√2 appears in Viète's formula for π:

for *m* square roots and only one minus sign.^{ [23] }

Similar in appearance but with a finite number of terms, √2 appears in various trigonometric constants:^{ [24] }

It is not known whether √2 is a normal number, a stronger property than irrationality, but statistical analyses of its binary expansion are consistent with the hypothesis that it is normal to base two.^{ [25] }

The identity cos π/4 = sin π/4 = 1/√2, along with the infinite product representations for the sine and cosine, leads to products such as

and

or equivalently,

The number can also be expressed by taking the Taylor series of a trigonometric function. For example, the series for cos π/4 gives

The Taylor series of √1 + *x* with *x* = 1 and using the double factorial *n*!! gives

The convergence of this series can be accelerated with an Euler transform, producing

It is not known whether √2 can be represented with a BBP-type formula. BBP-type formulas are known for π√2 and √2ln(1+√2), however.^{ [26] }

The number can be represented by an infinite series of Egyptian fractions, with denominators defined by 2^{n}th terms of a Fibonacci-like recurrence relation a(n)=34a(n-1)-a(n-2), a(0)=0, a(1)=6.^{ [27] }

The square root of two has the following continued fraction representation:

The convergents formed by truncating this representation form a sequence of fractions that approximate the square root of two to increasing accuracy, and that are described by the Pell numbers (known as side and diameter numbers to the ancient Greeks because of their use in approximating the ratio between the sides and diagonal of a square). The first convergents are: 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408. The convergent *p*/*q* differs from √2 by almost exactly 1/2*q*^{2}√2^{[ citation needed ]} and then the next convergent is *p* + 2*q*/*p* + *q*.

The following nested square expressions converge to √2:

In 1786, German physics professor Georg Lichtenberg^{ [28] } found that any sheet of paper whose long edge is √2 times longer than its short edge could be folded in half and aligned with its shorter side to produce a sheet with exactly the same proportions as the original. This ratio of lengths of the longer over the shorter side guarantees that cutting a sheet in half along a line results in the smaller sheets having the same (approximate) ratio as the original sheet. When Germany standardised paper sizes at the beginning of the 20th century, they used Lichtenberg's ratio to create the "A" series of paper sizes.^{ [28] } Today, the (approximate) aspect ratio of paper sizes under ISO 216 (A4, A0, etc.) is 1:√2.

Proof:

Let shorter length and longer length of the sides of a sheet of paper, with

- as required by ISO 216.

Let be the analogue ratio of the halved sheet, then

- .

There are some interesting properties involving the square root of 2 in the physical sciences:

- The square root of two is the frequency ratio of a tritone interval in twelve-tone equal temperament music.
- The square root of two forms the relationship of f-stops in photographic lenses, which in turn means that the ratio of
*areas*between two successive apertures is 2. - The celestial latitude (declination) of the Sun during a planet's astronomical cross-quarter day points equals the tilt of the planet's axis divided by √2.

- List of mathematical constants
- Square root of 3, √3
- Square root of 5, √5
- Gelfond–Schneider constant, 2
^{√2} - Silver ratio, 1 + √2

- ↑ "Compendium of Mathematical Symbols".
*Math Vault*. 2020-03-01. Retrieved 2020-08-10. - 1 2 Weisstein, Eric W. "Pythagoras's Constant".
*mathworld.wolfram.com*. Retrieved 2020-08-10. - ↑ Fowler, David H. (2001), "The story of the discovery of incommensurability, revisited",
*Neusis*(10): 45–61, MR 1891736 - ↑ "A002193 - OEIS".
*oeis.org*. Retrieved 2020-08-10. - ↑ Fowler and Robson, p. 368.

Photograph, illustration, and description of the*root(2)*tablet from the Yale Babylonian Collection Archived 2012-08-13 at the Wayback Machine

High resolution photographs, descriptions, and analysis of the*root(2)*tablet (YBC 7289) from the Yale Babylonian Collection - ↑ Henderson.
- ↑ Stephanie J. Morris, "The Pythagorean Theorem" Archived 2013-05-30 at the Wayback Machine , Dept. of Math. Ed., University of Georgia.
- ↑ Brian Clegg, "The Dangerous Ratio ..." Archived 2013-06-27 at the Wayback Machine , Nrich.org, November 2004.
- ↑ Kurt von Fritz, "The discovery of incommensurability by Hippasus of Metapontum", Annals of Mathematics, 1945.
- ↑ Conway, John H.; Guy, Richard K. (1996),
*The Book of Numbers*, Copernicus, p. 25 - ↑ Williams, Kim; Ostwald, Michael (2015).
*Architecture and Mathematics from Antiquity to the Future: Volume I: Antiquity to the 1500s*. Birkhäuser. p. 204. ISBN 9783319001371. - ↑ Although the term "Babylonian method" is common in modern usage, there is no direct evidence showing how the Babylonians computed the approximation of √2 seen on tablet YBC 7289. Fowler and Robson offer informed and detailed conjectures.

Fowler and Robson, p. 376. Flannery, p. 32, 158. - ↑ "Constants and Records of Computation". Numbers.computation.free.fr. 2010-08-12. Archived from the original on 2012-03-01. Retrieved 2012-09-07.
- ↑ "Number of known digits". Numbers.computation.free.fr. 2010-08-12. Archived from the original on 2012-03-01. Retrieved 2012-09-07.
- ↑ "Archived copy". Archived from the original on 2015-10-20. Retrieved 2015-12-03.CS1 maint: archived copy as title (link)
- ↑ All that Aristotle says, while writing about proofs by contradiction, is that “the diagonal of the square is incommensurate with the side, because odd numbers are equal to evens if it is supposed to be commensurate”.
- ↑ The edition of the Greek text of the
*Elements*published by E. F. August in Berlin in 1826–1829 already relegates this proof to an Appendix. The same thing occurs with J. L. Heiberg's edition (1883–1888). - ↑ Proof 8‴ Archived 2016-04-22 at the Wayback Machine
- ↑ Yanofsky, N. (2016). "Paradoxes, Contradictions, and the Limits of Science". Archived from the original on 2016-06-30.
- ↑ Tom M. Apostol (Nov 2000), "Irrationality of The Square Root of Two -- A Geometric Proof",
*The American Mathematical Monthly*,**107**(9): 841–842, doi:10.2307/2695741, JSTOR 2695741 - ↑ See Katz, Karin Usadi; Katz, Mikhail G. (2011), "Meaning in Classical Mathematics: Is it at Odds with Intuitionism?",
*Intellectica*,**56**(2): 223–302 (see esp. Section 2.3, footnote 15), arXiv: 1110.5456 , Bibcode:2011arXiv1110.5456U - ↑ Burton, David (2007).
*Elementary Number Theory*. McGraw-Hill Education. p. 247. ISBN 978-0-07-305188-8. - ↑ Courant, Richard; Robbins, Herbert (1941),
*What is mathematics? An Elementary Approach to Ideas and Methods*, London: Oxford University Press, p. 124 - ↑ Julian D. A. Wiseman Sin and cos in surds Archived 2009-05-06 at the Wayback Machine
- ↑ Good & Gover (1967).
- ↑ "Archived copy" (PDF). Archived (PDF) from the original on 2011-06-10. Retrieved 2010-04-30.CS1 maint: archived copy as title (link)
- ↑ Sloane, N. J. A. (ed.). "SequenceA082405(a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=6)".
*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-09-05. - 1 2 Houston, Keith (2016).
*The Book: A Cover-to-Cover Exploration of the Most Powerful Object of Our Time*. W. W. Norton & Company. p. 324. ISBN 978-0393244809.

In integral calculus, an **elliptic integral** is one of a number of related functions defined as the value of certain integrals. Originally, they arose in connection with the problem of finding the arc length of an ellipse and were first studied by Giulio Fagnano and Leonhard Euler. Modern mathematics defines an "elliptic integral" as any function *f* which can be expressed in the form

In mathematics, the **factorial** of a non-negative integer n, denoted by *n*!, is the product of all positive integers less than or equal to n:

In mathematics, the **gamma function** is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For any positive integer n,

In mathematics, a **square root** of a number *x* is a number *y* such that *y*^{2} = *x*; in other words, a number *y* whose *square* (the result of multiplying the number by itself, or *y* ⋅ *y*) is *x*. For example, 4 and −4 are square roots of 16, because 4^{2} = (−4)^{2} = 16. Every nonnegative real number *x* has a unique nonnegative square root, called the *principal square root*, which is denoted by where the symbol is called the *radical sign* or *radix*. For example, the principal square root of 9 is 3, which is denoted by because 3^{2} = 3 ⋅ 3 = 9 and 3 is nonnegative. The term (or number) whose square root is being considered is known as the *radicand*. The radicand is the number or expression underneath the radical sign, in this case 9.

The **imaginary unit** or **unit imaginary number** is a solution to the quadratic equation *x*^{2} + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3*i*.

In number theory, **Euler's totient function** counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as *φ*(*n*) or *ϕ*(*n*), and may also be called **Euler's phi function**. In other words, it is the number of integers k in the range 1 ≤ *k* ≤ *n* for which the greatest common divisor gcd(*n*, *k*) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

In mathematics, **Stirling's approximation** is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of n. It is named after James Stirling, though it was first stated by Abraham de Moivre.

In mathematics, a **root of unity**, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

In mathematics, an ** nth root** of a number

In mathematics, **tetration** is an operation based on iterated, or repeated, exponentiation. It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration.

In number theory, a **Heegner number** is a square-free positive integer such that the imaginary quadratic field has class number . Equivalently, its ring of integers has unique factorization.

In mathematics, **Viète's formula** is the following infinite product of nested radicals representing the mathematical constant π:

In algebra, a **nested radical** is a radical expression that contains (nests) another radical expression. Examples include

The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era (Archimedes). In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

In mathematics, the **sine** is a trigonometric function of an angle. The sine of an acute angle is defined in the context of a right triangle: for the specified angle, it is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle. For an angle , the sine function is denoted simply as .

The **square root of 3** is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as **√3**. It is more precisely called the **principal square root of 3**, to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as **Theodorus' constant**, after Theodorus of Cyrene, who proved its irrationality.

The **square root of 5** is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the **principal square root of 5**, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

In the 1760s, Johann Heinrich Lambert proved that the number π (pi) is irrational: that is, it cannot be expressed as a fraction *a*/*b*, where *a* is an integer and *b* is a non-zero integer. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich.

In geometry, a **ball** is a region in space comprising all points within a fixed distance from a given point; that is, it is the region enclosed by a sphere or hypersphere. An *n*-ball is a ball in *n*-dimensional Euclidean space. The **volume of a unit n-ball** is an important expression that occurs in formulas throughout mathematics; it generalizes the notion of the volume enclosed by a sphere in 3-dimensional space.

- Apostol, Tom M. (2000), "Irrationality of the square root of two – A geometric proof",
*American Mathematical Monthly*,**107**(9): 841–842, doi:10.2307/2695741, JSTOR 2695741 . - Aristotle (2007),
*Analytica priora*, eBooks@Adelaide - Bishop, Errett (1985), Schizophrenia in contemporary mathematics. Errett Bishop: reflections on him and his research (San Diego, Calif., 1983), 1–32, Contemp. Math. 39, Amer. Math. Soc., Providence, RI.
- Flannery, David (2005),
*The Square Root of Two*, Springer-Verlag, ISBN 0-387-20220-X . - Fowler, David; Robson, Eleanor (1998), "Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context" (PDF),
*Historia Mathematica*,**25**(4): 366–378, doi:10.1006/hmat.1998.2209, archived from the original (PDF) on 2006-09-03. - Good, I. J.; Gover, T. N. (1967), "The generalized serial test and the binary expansion of √2",
*Journal of the Royal Statistical Society, Series A*,**130**(1): 102–107, doi:10.2307/2344040, JSTOR 2344040 . - Henderson, David W. (2000), "Square roots in the Śulba Sūtras", in Gorini, Catherine A. (ed.),
*Geometry At Work: Papers in Applied Geometry*, Cambridge University Press, pp. 39–45, ISBN 978-0-88385-164-7 .

- Gourdon, X.; Sebah, P. (2001), "Pythagoras' Constant: √2",
*Numbers, Constants and Computation*. - The Square Root of Two to 5 million digits by Jerry Bonnell and Robert J. Nemiroff. May, 1994.
- Square root of 2 is irrational, a collection of proofs
- Grime, James; Bowley, Roger. "The Square Root √2 of Two".
*Numberphile*. Brady Haran. - √2 Search Engine 2 billion searchable digits of √2, π and e

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.