YBC 7289

Last updated

YBC 7289 YBC-7289-OBV-REV.jpg
YBC 7289

YBC 7289 is a Babylonian clay tablet notable for containing an accurate sexagesimal approximation to the square root of 2, the length of the diagonal of a unit square. This number is given to the equivalent of six decimal digits, "the greatest known computational accuracy ... in the ancient world". [1] The tablet is believed to be the work of a student in southern Mesopotamia from some time between 1800 and 1600 BC.

Contents

Content

Babylonian clay tablet YBC 7289 with annotations. The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1 24 51 10, which is good to about six decimal digits.
1 + 24/60 + 51/60 + 10/60 = 1.41421296... The tablet also gives an example where one side of the square is 30, and the resulting diagonal is 42 25 35 or 42.4263888... YBC-7289-OBV-labeled.jpg
Babylonian clay tablet YBC 7289 with annotations. The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1 24 51 10, which is good to about six decimal digits.
1 + 24/60 + 51/60 + 10/60 = 1.41421296... The tablet also gives an example where one side of the square is 30, and the resulting diagonal is 42 25 35 or 42.4263888...

The tablet depicts a square with its two diagonals. One side of the square is labeled with the sexagesimal number 30. The diagonal of the square is labeled with two sexagesimal numbers. The first of these two, 1;24,51,10 represents the number 305470/216000 ≈ 1.414213, a numerical approximation of the square root of two that is off by less than one part in two million. The second of the two numbers is 42;25,35 = 30547/720 ≈ 42.426. This number is the result of multiplying 30 by the given approximation to the square root of two, and approximates the length of the diagonal of a square of side length 30. [2]

Because the Babylonian sexagesimal notation did not indicate which digit had which place value, one alternative interpretation is that the number on the side of the square is 30/60 = 1/2. Under this alternative interpretation, the number on the diagonal is 30547/43200 ≈ 0.70711, a close numerical approximation of , the length of the diagonal of a square of side length 1/2, that is also off by less than one part in two million. David Fowler and Eleanor Robson write, "Thus we have a reciprocal pair of numbers with a geometric interpretation…". They point out that, while the importance of reciprocal pairs in Babylonian mathematics makes this interpretation attractive, there are reasons for skepticism. [2]

The reverse side is partly erased, but Robson believes it contains a similar problem concerning the diagonal of a rectangle whose two sides and diagonal are in the ratio 3:4:5. [3]

Interpretation

Although YBC 7289 is frequently depicted (as in the photo) with the square oriented diagonally, the standard Babylonian conventions for drawing squares would have made the sides of the square vertical and horizontal, with the numbered side at the top. [4] The small round shape of the tablet, and the large writing on it, suggests that it was a "hand tablet" of a type typically used for rough work by a student who would hold it in the palm of his hand. [1] [2] The student would likely have copied the sexagesimal value of the square root of 2 from another tablet, but an iterative procedure for computing this value can be found in another Babylonian tablet, BM 96957 + VAT 6598. [2]

The mathematical significance of this tablet was first recognized by Otto E. Neugebauer and Abraham Sachs in 1945. [2] [5] The tablet "demonstrates the greatest known computational accuracy obtained anywhere in the ancient world", the equivalent of six decimal digits of accuracy. [1] Other Babylonian tablets include the computations of areas of hexagons and heptagons, which involve the approximation of more complicated algebraic numbers such as . [2] The same number can also be used in the interpretation of certain ancient Egyptian calculations of the dimensions of pyramids. However, the much greater numerical precision of the numbers on YBC 7289 makes it more clear that they are the result of a general procedure for calculating them, rather than merely being an estimate. [6]

The same sexagesimal approximation to , 1;24,51,10, was used much later by Greek mathematician Claudius Ptolemy in his Almagest . [7] [8] Ptolemy did not explain where this approximation came from and it may be assumed to have been well known by his time. [7]

Provenance and curation

It is unknown where in Mesopotamia YBC 7289 comes from, but its shape and writing style make it likely that it was created in southern Mesopotamia, sometime between 1800BC and 1600BC. [1] [2]

At Yale, the Institute for the Preservation of Cultural Heritage has produced a digital model of the tablet, suitable for 3D printing. [9] [10] [11] The original tablet is currently kept in the Yale Babylonian Collection at Yale University. [10]

See also

Related Research Articles

<span class="mw-page-title-main">History of geometry</span> Historical development of geometry

Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).

<span class="mw-page-title-main">Number theory</span> Mathematics of integer properties

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers, or defined as generalizations of the integers.

<span class="mw-page-title-main">Number</span> Used to count, measure, and label

A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

Sexagesimal, also known as base 60, is a numeral system with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form—for measuring time, angles, and geographic coordinates.

<span class="mw-page-title-main">Babylonian cuneiform numerals</span> Numeral system

Babylonian cuneiform numerals, also used in Assyria and Chaldea, were written in cuneiform, using a wedge-tipped reed stylus to print a mark on a soft clay tablet which would be exposed in the sun to harden to create a permanent record.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">Baudhayana sutras</span> Group of Vedic Sanskrit texts

The Baudhāyana sūtras are a group of Vedic Sanskrit texts which cover dharma, daily ritual, mathematics and is one of the oldest Dharma-related texts of Hinduism that have survived into the modern age from the 1st-millennium BCE. They belong to the Taittiriya branch of the Krishna Yajurveda school and are among the earliest texts of the genre.

Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.

<span class="mw-page-title-main">Plimpton 322</span> Babylonian clay tablet of numbers in Pythagorean triples

Plimpton 322 is a Babylonian clay tablet, notable as containing an example of Babylonian mathematics. It has number 322 in the G.A. Plimpton Collection at Columbia University. This tablet, believed to have been written around 1800 BC, has a table of four columns and 15 rows of numbers in the cuneiform script of the period.

<span class="mw-page-title-main">Babylonian mathematics</span> Mathematics in Mesopotamia 1830–539 BC

Babylonian mathematics is the mathematics developed or practiced by the people of Mesopotamia, from the days of the early Sumerians to the centuries following the fall of Babylon in 539 BC. Babylonian mathematical texts are plentiful and well edited. With respect to time they fall in two distinct groups: one from the Old Babylonian period, the other mainly Seleucid from the last three or four centuries BC. With respect to content, there is scarcely any difference between the two groups of texts. Babylonian mathematics remained constant, in character and content, for over a millennium.

<span class="mw-page-title-main">Babylonian astronomy</span> Study of celestial objects during the early history of Mesopotamia

Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia.

<span class="mw-page-title-main">Regular number</span> Numbers that evenly divide powers of 60

Regular numbers are numbers that evenly divide powers of 60 (or, equivalently, powers of 30). Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 602 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular.

<span class="mw-page-title-main">Square root of 3</span> Unique positive real number which when multiplied by itself gives 3

The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality.

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.

<span class="mw-page-title-main">IM 67118</span> Old Babylonian clay tablet about a problem in geometry

IM 67118, also known as Db2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal. In the last part of the text, the solution is proved correct using the Pythagorean theorem. The steps of the solution are believed to represent cut-and-paste geometry operations involving a diagram from which, it has been suggested, ancient Mesopotamians might, at an earlier time, have derived the Pythagorean theorem.

<span class="mw-page-title-main">Square root of 6</span> Positive real number which when multiplied by itself gives 6

The square root of 6 is the positive real number that, when multiplied by itself, gives the natural number 6. It is more precisely called the principal square root of 6, to distinguish it from the negative number with the same property. This number appears in numerous geometric and number-theoretic contexts. It can be denoted in surd form as:

Christine Proust is a French historian of mathematics and Assyriologist known for her research on Babylonian mathematics. She is a senior researcher at the SPHERE joint team of CNRS and Paris Diderot University, where she and Agathe Keller are co-directors of the SAW project headed by Karine Chemla.

<span class="mw-page-title-main">Square root of 7</span> Positive real number which when multiplied by itself gives 7

The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7. It is more precisely called the principal square root of 7, to distinguish it from the negative number with the same property. This number appears in various geometric and number-theoretic contexts. It can be denoted in surd form as:

References

  1. 1 2 3 4 Beery, Janet L.; Swetz, Frank J. (July 2012), "The best known old Babylonian tablet?", Convergence, Mathematical Association of America, doi: 10.4169/loci003889
  2. 1 2 3 4 5 6 7 Fowler, David; Robson, Eleanor (1998), "Square root approximations in old Babylonian mathematics: YBC 7289 in context", Historia Mathematica , 25 (4): 366–378, doi: 10.1006/hmat.1998.2209 , MR   1662496
  3. Robson, Eleanor (2007), "Mesopotamian Mathematics", in Katz, Victor J. (ed.), The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton University Press, p. 143, ISBN   978-0-691-11485-9
  4. Friberg, Jöran (2007), Friberg, Jöran (ed.), A remarkable collection of Babylonian mathematical texts, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York, p. 211, doi:10.1007/978-0-387-48977-3, ISBN   978-0-387-34543-7, MR   2333050
  5. Neugebauer, O.; Sachs, A. J. (1945), Mathematical Cuneiform Texts, American Oriental Series, American Oriental Society and the American Schools of Oriental Research, New Haven, Conn., p. 43, MR   0016320
  6. Rudman, Peter S. (2007), How mathematics happened: the first 50,000 years, Prometheus Books, Amherst, NY, p. 241, ISBN   978-1-59102-477-4, MR   2329364
  7. 1 2 Neugebauer, O. (1975), A History of Ancient Mathematical Astronomy, Part One, Springer-Verlag, New York-Heidelberg, pp. 22–23, ISBN   978-3-642-61910-6, MR   0465672
  8. Pedersen, Olaf (2011), Jones, Alexander (ed.), A Survey of the Almagest, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, p. 57, ISBN   978-0-387-84826-6
  9. Lynch, Patrick (April 11, 2016), "A 3,800-year journey from classroom to classroom", Yale News, retrieved 2017-10-25
  10. 1 2 A 3D-print of ancient history: one of the most famous mathematical texts from Mesopotamia, Yale Institute for the Preservation of Cultural Heritage, January 16, 2016, retrieved 2017-10-25
  11. Kwan, Alistair (April 20, 2019), Mesopotamian tablet YBC 7289, University of Auckland, doi:10.17608/k6.auckland.6114425.v1