Heptagon

Last updated

Regular heptagon
Regular polygon 7 annotated.svg
A regular heptagon
Type Regular polygon
Edges and vertices 7
Schläfli symbol {7}
Coxeter–Dynkin diagrams CDel node 1.pngCDel 7.pngCDel node.png
Symmetry group Dihedral (D7), order 2×7
Internal angle (degrees)≈128.571°
Properties Convex, cyclic, equilateral, isogonal, isotoxal
Dual polygon Self

In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.

Contents

The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua- , a Latin-derived numerical prefix, rather than hepta- , a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.

Regular heptagon

A regular heptagon, in which all sides and all angles are equal, has internal angles of 5π/7 radians (12847 degrees). Its Schläfli symbol is {7}.

Area

The area (A) of a regular heptagon of side length a is given by:

This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then halving each triangle using the apothem as the common side. The apothem is half the cotangent of and the area of each of the 14 small triangles is one-fourth of the apothem.

The area of a regular heptagon inscribed in a circle of radius R is while the area of the circle itself is thus the regular heptagon fills approximately 0.8710 of its circumscribed circle.

Construction

As 7 is a Pierpont prime but not a Fermat prime, the regular heptagon is not constructible with compass and straightedge but is constructible with a marked ruler and compass. It is the smallest regular polygon with this property. This type of construction is called a neusis construction. It is also constructible with compass, straightedge and angle trisector. The impossibility of straightedge and compass construction follows from the observation that is a zero of the irreducible cubic x3 + x2 − 2x − 1. Consequently, this polynomial is the minimal polynomial of 2cos(7), whereas the degree of the minimal polynomial for a constructible number must be a power of 2.

Neusis-heptagon.png
A neusis construction of the interior angle in a regular heptagon.
01-Siebeneck-Tomahawk-Animation.gif
An animation from a neusis construction with radius of circumcircle , according to Andrew M. Gleason [1] based on the angle trisection by means of the tomahawk. This construction relies on the fact that

Heptagon with given side length:
An animation from a neusis construction with marked ruler, according to David Johnson Leisk (Crockett Johnson). 01-Siebeneck-nach Johnson.gif
Heptagon with given side length:
An animation from a neusis construction with marked ruler, according to David Johnson Leisk (Crockett Johnson).


Approximation

An approximation for practical use with an error of about 0.2% is to use half the side of an equilateral triangle inscribed in the same circle as the length of the side of a regular heptagon. It is unknown who first found this approximation, but it was mentioned by Heron of Alexandria's Metrica in the 1st century AD, was well known to medieval Islamic mathematicians, and can be found in the work of Albrecht Dürer. [2] [3] Let A lie on the circumference of the circumcircle. Draw arc BOC. Then gives an approximation for the edge of the heptagon.

This approximation uses for the side of the heptagon inscribed in the unit circle while the exact value is .

Example to illustrate the error:
At a circumscribed circle radius r = 1 m, the absolute error of the 1st side would be approximately -1.7 mm

7-gone approx.png

Other approximations

There are other approximations of a heptagon using compass and straightedge, but they are time consuming to draw. [4]

Symmetry

Symmetries of a regular heptagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center. Symmetries of heptagon.png
Symmetries of a regular heptagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center.

The regular heptagon belongs to the D7h point group (Schoenflies notation), order 28. The symmetry elements are: a 7-fold proper rotation axis C7, a 7-fold improper rotation axis, S7, 7 vertical mirror planes, σv, 7 2-fold rotation axes, C2, in the plane of the heptagon and a horizontal mirror plane, σh, also in the heptagon's plane. [6]

Diagonals and heptagonal triangle

a=red, b=blue, c=green lines Heptagrams.svg
a=red, b=blue, c=green lines

The regular heptagon's side a, shorter diagonal b, and longer diagonal c, with a<b<c, satisfy [7] :Lemma 1

(the optic equation)

and hence

and [7] :Coro. 2

Thus –b/c, c/a, and a/b all satisfy the cubic equation However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.

The approximate lengths of the diagonals in terms of the side of the regular heptagon are given by

We also have [8]

and

A heptagonal triangle has vertices coinciding with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex) and angles and Thus its sides coincide with one side and two particular diagonals of the regular heptagon. [7]

In polyhedra

Apart from the heptagonal prism and heptagonal antiprism, no convex polyhedron made entirely out of regular polygons contains a heptagon as a face.

Star heptagons

Two kinds of star heptagons (heptagrams) can be constructed from regular heptagons, labeled by Schläfli symbols {7/2}, and {7/3}, with the divisor being the interval of connection.

Heptagrams.svg
Blue, {7/2} and green {7/3} star heptagons inside a red heptagon.

Tiling and packing

3.7.42 vertex.png
Triangle, heptagon, and 42-gon vertex
Heptagonal tiling.svg
Hyperbolic heptagon tiling

A regular triangle, heptagon, and 42-gon can completely fill a plane vertex. However, there is no tiling of the plane with only these polygons, because there is no way to fit one of them onto the third side of the triangle without leaving a gap or creating an overlap. In the hyperbolic plane, tilings by regular heptagons are possible. There are also concave heptagon tilings possible in the Euclidean plane. [9]

The densest double lattice packing of the Euclidean plane by regular heptagons, conjectured to have the lowest maximum packing density of any convex set 2-d heptagon packing.svg
The densest double lattice packing of the Euclidean plane by regular heptagons, conjectured to have the lowest maximum packing density of any convex set

The regular heptagon has a double lattice packing of the Euclidean plane of packing density approximately 0.89269. This has been conjectured to be the lowest density possible for the optimal double lattice packing density of any convex set, and more generally for the optimal packing density of any convex set. [10]

Empirical examples

Geometry problem-Sb 13088-IMG 0593-white.jpg
Heptagon divided into triangles, clay tablet from Susa, 2nd millennium BCE
Furstenmausoleum Stadthagen 10 Kuppel.JPG
Heptagonal dome of the Mausoleum of Prince Ernst

The United Kingdom, since 1982, has two heptagonal coins, the 50p and 20p pieces. The Barbados Dollar are also heptagonal. Strictly, the shape of the coins is a Reuleaux heptagon, a curvilinear heptagon which has curves of constant width; the sides are curved outwards to allow the coins to roll smoothly when they are inserted into a vending machine. Botswana pula coins in the denominations of 2 Pula, 1 Pula, 50 Thebe and 5 Thebe are also shaped as equilateral-curve heptagons. Coins in the shape of Reuleaux heptagons are also in circulation in Mauritius, U.A.E., Tanzania, Samoa, Papua New Guinea, São Tomé and Príncipe, Haiti, Jamaica, Liberia, Ghana, the Gambia, Jordan, Jersey, Guernsey, Isle of Man, Gibraltar, Guyana, Solomon Islands, Falkland Islands and Saint Helena. The 1000 Kwacha coin of Zambia is a true heptagon.

The Brazilian 25-cent coin has a heptagon inscribed in the coin's disk. Some old versions of the coat of arms of Georgia, including in Soviet days, used a {7/2} heptagram as an element.

A number of coins, including the 20 euro cent coin, have heptagonal symmetry in a shape called the Spanish flower.

In architecture, heptagonal floor plans are very rare. A remarkable example is the Mausoleum of Prince Ernst in Stadthagen, Germany.

Many police badges in the US have a {7/2} heptagram outline.

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Constructible number</span> Number constructible via compass and straightedge

In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots.

<span class="mw-page-title-main">Heptadecagon</span> Polygon with 17 edges

In geometry, a heptadecagon, septadecagon or 17-gon is a seventeen-sided polygon.

<span class="mw-page-title-main">Squaring the circle</span> Problem of constructing equal-area shapes

Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of lines and circles implied the existence of such a square.

<span class="mw-page-title-main">Octagon</span> Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

<span class="mw-page-title-main">Golden angle</span> Angle created by applying the golden ratio to a circle

In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as the ratio of the length of the larger arc to the full circumference of the circle.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Dodecagon</span> Polygon with 12 edges

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.

<span class="mw-page-title-main">Hendecagon</span> Shape with eleven sides

In geometry, a hendecagon or 11-gon is an eleven-sided polygon.

<span class="mw-page-title-main">Tridecagon</span> Polygon with 13 edges

In geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four straight sides of equal length and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°). A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Pentadecagon</span> Polygon with 15 edges

In geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon.

<span class="mw-page-title-main">Apothem</span> Segment from the center of a polygon to the midpoint of one of its sides

The apothem of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides. The word "apothem" can also refer to the length of that line segment and comes from the ancient Greek ἀπόθεμα, made of ἀπό and θέμα, indicating a generic line written down. Regular polygons are the only polygons that have apothems. Because of this, all the apothems in a polygon will be congruent.

In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Tetradecagon</span> Polygon with 14 edges

In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

In trigonometry, a skinny triangle is a triangle whose height is much greater than its base. The solution of such triangles can be greatly simplified by using the approximation that the sine of a small angle is equal to that angle in radians. The solution is particularly simple for skinny triangles that are also isosceles or right triangles: in these cases the need for trigonometric functions or tables can be entirely dispensed with.

<span class="mw-page-title-main">Planigon</span> Convex polygon which can tile the plane by itself

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

<span class="mw-page-title-main">Icositrigon</span> Polygon with 23 sides

In geometry, an icositrigon or 23-gon is a 23-sided polygon. The icositrigon has the distinction of being the smallest regular polygon that is not neusis constructible.

References

  1. Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon p. 186 (Fig.1) –187" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. JSTOR   2323624. Archived from the original (PDF) on 19 December 2015.
  2. Hogendijk, Jan P. (1987). "Abu'l-Jūd's Answer to a Question of al-Bīrūnī Concerning the Regular Heptagon" (PDF). Annals of the New York Academy of Sciences. 500 (1): 175–183. doi:10.1111/j.1749-6632.1987.tb37202.x.
  3. G.H. Hughes, "The Polygons of Albrecht Dürer-1525, The Regular Heptagon", Fig. 11 the side of the Heptagon (7) Fig. 15, image on the left side, retrieved on 4 December 2015
  4. raumannkidwai. "Heptagon." Chart. Geogebra. Accessed January 20, 2024. https://www.geogebra.org/classic/CvsudDWr.
  5. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN   978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  6. Salthouse, J.A; Ware, M.J. (1972). Point group character tables and related data. Cambridge: Cambridge University Press. ISBN   0-521-08139-4.
  7. 1 2 3 Abdilkadir Altintas, "Some Collinearities in the Heptagonal Triangle", Forum Geometricorum 16, 2016, 249–256.http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf
  8. Leon Bankoff and Jack Garfunkel, "The heptagonal triangle", Mathematics Magazine 46 (1), January 1973, 7–19.
  9. Sycamore916, ed. "Heptagon." Polytope Wiki. Last modified November 2023. Accessed January 20, 2024. https://polytope.miraheze.org/wiki/Heptagon.
  10. Kallus, Yoav (2015). "Pessimal packing shapes". Geometry & Topology. 19 (1): 343–363. arXiv: 1305.0289 . doi:10.2140/gt.2015.19.343. MR   3318753.

Heptagon