Triacontagon

Last updated
Regular triacontagon
Regular polygon 30.svg
A regular triacontagon
Type Regular polygon
Edges and vertices 30
Schläfli symbol {30}, t{15}
Coxeter–Dynkin diagrams CDel node 1.pngCDel 3x.pngCDel 0x.pngCDel node.png
CDel node 1.pngCDel 15.pngCDel node 1.png
Symmetry group Dihedral (D30), order 2×30
Internal angle (degrees)168°
Properties Convex, cyclic, equilateral, isogonal, isotoxal
Dual polygon Self

In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees.

Contents

Regular triacontagon

The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}.

One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).

The area of a regular triacontagon is (with t = edge length) [1]

The inradius of a regular triacontagon is

The circumradius of a regular triacontagon is

Construction

Regular triacontagon with given circumcircle. D is the midpoint of AM, DC = DF, and CF, which is the side length of the regular pentagon, is E25E1. Since 1/30 = 1/5 - 1/6, the difference between the arcs subtended by the sides of a regular pentagon and hexagon (E25E1 and E25A) is that of the regular triacontagon, AE1. 01-Dreissigeck.svg
Regular triacontagon with given circumcircle. D is the midpoint of AM, DC = DF, and CF, which is the side length of the regular pentagon, is E25E1. Since 1/30 = 1/5 - 1/6, the difference between the arcs subtended by the sides of a regular pentagon and hexagon (E25E1 and E25A) is that of the regular triacontagon, AE1.

As 30 = 2 × 3 × 5, a regular triacontagon is constructible using a compass and straightedge. [2]

Symmetry

The symmetries of a regular triacontagon as shown with colors on edges and vertices. Lines of reflections are blue through vertices, and purple through edges. Gyrations are given as numbers in the center. Vertices are colored by their symmetry positions. Subgroup symmetries are connected by colored lines, index 2, 3, and 5. Symmetries of triacontagon.png
The symmetries of a regular triacontagon as shown with colors on edges and vertices. Lines of reflections are blue through vertices, and purple through edges. Gyrations are given as numbers in the center. Vertices are colored by their symmetry positions. Subgroup symmetries are connected by colored lines, index 2, 3, and 5.

The regular triacontagon has Dih30 dihedral symmetry, order 60, represented by 30 lines of reflection. Dih30 has 7 dihedral subgroups: Dih15, (Dih10, Dih5), (Dih6, Dih3), and (Dih2, Dih1). It also has eight more cyclic symmetries as subgroups: (Z30, Z15), (Z10, Z5), (Z6, Z3), and (Z2, Z1), with Zn representing π/n radian rotational symmetry.

John Conway labels these lower symmetries with a letter and order of the symmetry follows the letter. [3] He gives d (diagonal) with mirror lines through vertices, p with mirror lines through edges (perpendicular), i with mirror lines through both vertices and edges, and g for rotational symmetry. a1 labels no symmetry.

These lower symmetries allows degrees of freedoms in defining irregular triacontagons. Only the g30 subgroup has no degrees of freedom but can be seen as directed edges.

Dissection

30-gon with 420 rhombs 30-gon rhombic dissection-size2.svg
30-gon with 420 rhombs

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular triacontagon, m=15, it can be divided into 105: 7 sets of 15 rhombs. This decomposition is based on a Petrie polygon projection of a 15-cube.

Examples
30-gon rhombic dissection.svg 30-gon-dissection-star.svg 30-gon rhombic dissection2.svg 30-gon rhombic dissectionx.svg 30-gon-dissection-random.svg

Triacontagram

A triacontagram is a 30-sided star polygon (though the word is extremely rare). There are 3 regular forms given by Schläfli symbols {30/7}, {30/11}, and {30/13}, and 11 compound star figures with the same vertex configuration.

There are also isogonal triacontagrams constructed as deeper truncations of the regular pentadecagon {15} and pentadecagram {15/7}, and inverted pentadecagrams {15/11}, and {15/13}. Other truncations form double coverings: t{15/14}={30/14}=2{15/7}, t{15/8}={30/8}=2{15/4}, t{15/4}={30/4}=2{15/4}, and t{15/2}={30/2}=2{15}. [5]

Petrie polygons

The regular triacontagon is the Petrie polygon for three 8-dimensional polytopes with E8 symmetry, shown in orthogonal projections in the E8 Coxeter plane. It is also the Petrie polygon for two 4-dimensional polytopes, shown in the H4 Coxeter plane.

E8H4
E8Petrie.svg
421
2 41 t0 E8.svg
241
Gosset 1 42 polytope petrie.svg
142
120-cell graph H4.svg
120-cell
600-cell graph H4.svg
600-cell

The regular triacontagram {30/7} is also the Petrie polygon for the great grand stellated 120-cell and grand 600-cell.

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Heptadecagon</span> Polygon with 17 edges

In geometry, a heptadecagon, septadecagon or 17-gon is a seventeen-sided polygon.

<span class="mw-page-title-main">Octagon</span> Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Icosagon</span> Polygon with 20 edges

In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees.

<span class="mw-page-title-main">Dodecagon</span> Polygon with 12 edges

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Pentadecagon</span> Polygon with 15 edges

In geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon.

<span class="mw-page-title-main">257-gon</span> Polygon with 257 sides

In geometry, a 257-gon is a polygon with 257 sides. The sum of the interior angles of any non-self-intersecting 257-gon is 45,900°.

<span class="mw-page-title-main">65537-gon</span> Shape with 65537 sides

In geometry, a 65537-gon is a polygon with 65,537 (216 + 1) sides. The sum of the interior angles of any non–self-intersecting 65537-gon is 11796300°.

<span class="mw-page-title-main">Tetradecagon</span> Polygon with 14 edges

In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon.

<span class="mw-page-title-main">Hexadecagon</span> Polygon with 16 edges

In mathematics, a hexadecagon is a sixteen-sided polygon.

<span class="mw-page-title-main">Octadecagon</span> Polygon with 18 edges

In geometry, an octadecagon or 18-gon is an eighteen-sided polygon.

<span class="mw-page-title-main">Megagon</span> Polygon with 1 million edges

A megagon or 1,000,000-gon (million-gon) is a polygon with one million sides.

<span class="mw-page-title-main">Icositetragon</span> Polygon with 24 edges

In geometry, an icositetragon or 24-gon is a twenty-four-sided polygon. The sum of any icositetragon's interior angles is 3960 degrees.

References

  1. Weisstein, Eric W. "Triacontagon". MathWorld .
  2. Constructible Polygon
  3. The Symmetries of Things, Chapter 20
  4. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  5. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum