2 41 polytope

Last updated
4 21 t0 E6.svg
421
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1 42 polytope E6 Coxeter plane.svg
142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t0 E6.svg
241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
4 21 t1 E6.svg
Rectified 421
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t4 E6.svg
Rectified 142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t1 E6.svg
Rectified 241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
4 21 t2 E6.svg
Birectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t3 E6.svg
Trirectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Orthogonal projections in E6 Coxeter plane

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

Contents

Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences.

The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142.

These polytopes are part of a family of 255 (28  1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

241 polytope

241 polytope
TypeUniform 8-polytope
Family 2k1 polytope
Schläfli symbol {3,3,34,1}
Coxeter symbol 241
Coxeter diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces17520:
240 231 Gosset 2 31 polytope.svg
17280 {36} 7-simplex t0.svg
6-faces144960:
6720 221 E6 graph.svg
138240 {35} 6-simplex t0.svg
5-faces544320:
60480 211 Cross graph 5.svg
483840 {34} 5-simplex t0.svg
4-faces1209600:
241920 {201 4-simplex t0.svg
967680 {33} 4-simplex t0.svg
Cells1209600 {32} 3-simplex t0.svg
Faces483840 {3} 2-simplex t0.svg
Edges69120
Vertices2160
Vertex figure 141
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The 241 is composed of 17,520 facets (240 231 polytopes and 17,280 7-simplices), 144,960 6-faces (6,720 221 polytopes and 138,240 6-simplices), 544,320 5-faces (60,480 211 and 483,840 5-simplices), 1,209,600 4-faces (4-simplices), 1,209,600 cells (tetrahedra), 483,840 faces (triangles), 69,120 edges, and 2160 vertices. Its vertex figure is a 7-demicube.

This polytope is a facet in the uniform tessellation, 251 with Coxeter-Dynkin diagram:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Alternate names

  • E. L. Elte named it V2160 (for its 2160 vertices) in his 1912 listing of semiregular polytopes. [1]
  • It is named 241 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Diacositetracont-myriaheptachiliadiacosioctaconta-zetton (Acronym Bay) - 240-17280 facetted polyzetton (Jonathan Bowers) [2]

Coordinates

The 2160 vertices can be defined as follows:

16 permutations of (±4,0,0,0,0,0,0,0) of (8-orthoplex)
1120 permutations of (±2,±2,±2,±2,0,0,0,0) of (trirectified 8-orthoplex)
1024 permutations of (±3,±1,±1,±1,±1,±1,±1,±1) with an odd number of minus-signs

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the 7-simplex: CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png. There are 17280 of these facets

Removing the node on the end of the 4-length branch leaves the 231, CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png. There are 240 of these facets. They are centered at the positions of the 240 vertices in the 421 polytope.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 7-demicube, 141, CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [3]

Visualizations

The projection of 241 to the E8 Coxeter plane (aka. the Petrie projection) with polytope radius
2
2
{\displaystyle 2{\sqrt {2}}}
and 69120 edges of length
2
2
{\displaystyle 2{\sqrt {2}}} E8 241 Petrie Projection.png
The projection of 241 to the E8 Coxeter plane (aka. the Petrie projection) with polytope radius and 69120 edges of length
Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:
.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}
u = (1, ph, 0, -1, ph, 0,0,0)
v = (ph, 0, 1, ph, 0, -1,0,0)
w = (0, 1, ph, 0, -1, ph,0,0)
The 2160 projected 241 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. The overlapping vertices are color coded by overlap count. Also shown is a list of each hull group, the normed distance from the origin, and the number of vertices in the group. E8 241-3D.png
Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:
  • u = (1, φ, 0, −1, φ, 0,0,0)
  • v = (φ, 0, 1, φ, 0, −1,0,0)
  • w = (0, 1, φ, 0, −1, φ,0,0)
The 2160 projected 241 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. The overlapping vertices are color coded by overlap count. Also shown is a list of each hull group, the normed distance from the origin, and the number of vertices in the group.
The 2160 projected 241 polytope projected to 3D (as above) with each normed hull group listed individually with vertex counts. Notice the last two outer hulls are a combination of two overlapped Icosahedrons (24) and a Icosidodecahedron (30). E8 241-3D Concentric Hulls List.png
The 2160 projected 241 polytope projected to 3D (as above) with each normed hull group listed individually with vertex counts. Notice the last two outer hulls are a combination of two overlapped Icosahedrons (24) and a Icosidodecahedron (30).
E8
[30]
[20][24]
2 41 t0 E8.svg
(1)
2 41 t0 p20.svg 2 41 t0 p24.svg
E7
[18]
E6
[12]
[6]
2 41 t0 E7.svg 2 41 t0 E6.svg
(1,8,24,32)
2 41 t0 mox.svg

Petrie polygon projections are 12, 18, or 30-sided based on the E6, E7, and E8 symmetries (respectively). The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
2 41 t0 B2.svg 2 41 t0 B3.svg 2 41 t0 B4.svg
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
2 41 t0 B5.svg 2 41 t0 B6.svg
(1,3,9,12,18,21,36)
2 41 t0 B7.svg
B8
[16/2]
A5
[6]
A7
[8]
2 41 t0 B8.svg 2 41 t0 A5.svg 2 41 t0 A7.svg
2k1 figures in n dimensions
SpaceFiniteEuclideanHyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1E4=A4E5=D5 E6 E7 E8 E9 = = E8+E10 = = E8++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,2,1][30,2,1][[31,2,1]][32,2,1][33,2,1][34,2,1][35,2,1][36,2,1]
Order 1212038451,8402,903,040696,729,600
Graph Trigonal dihedron.png 4-simplex t0.svg 5-cube t4.svg Up 2 21 t0 E6.svg Up2 2 31 t0 E7.svg 2 41 t0 E8.svg --
Name 2−1,1 201 211 221 231 241 251 261

Rectified 2_41 polytope

Rectified 241 polytope
TypeUniform 8-polytope
Schläfli symbol t1{3,3,34,1}
Coxeter symbol t1(241)
Coxeter diagram CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces19680 total:

240 t1(221)
17280 t1{36}
2160 141

6-faces313440
5-faces1693440
4-faces4717440
Cells7257600
Faces5322240
Edges19680
Vertices69120
Vertex figure rectified 6-simplex prism
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The rectified 241 is a rectification of the 241 polytope, with vertices positioned at the mid-edges of the 241.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space, defined by root vectors of the E8 Coxeter group.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the rectified 7-simplex: CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 4-length branch leaves the rectified 231, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 2-length branch leaves the 7-demicube, 141CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the rectified 6-simplex prism, CDel nodea 1.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Visualizations

Petrie polygon projections are 12, 18, or 30-sided based on the E6, E7, and E8 symmetries (respectively). The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

E8
[30]
[20][24]
2 41 t1 E8.svg
(1)
2 41 t1 p20.svg 2 41 t1 p24.svg
E7
[18]
E6
[12]
[6]
2 41 t1 E7.svg 2 41 t1 E6.svg
(1,8,24,32)
2 41 t1 mox.svg
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
2 41 t1 B2.svg 2 41 t1 B3.svg 2 41 t1 B4.svg
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
2 41 t1 B5.svg 2 41 t1 B6.svg
(1,3,9,12,18,21,36)
2 41 t1 B7.svg
B8
[16/2]
A5
[6]
A7
[8]
2 41 t1 B8.svg 2 41 t1 A5.svg 2 41 t1 A7.svg

See also

Notes

  1. Elte, 1912
  2. Klitzing, (x3o3o3o *c3o3o3o3o - bay)
  3. Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  4. Jonathan Bowers
  5. Klitzing, (o3x3o3o *c3o3o3o3o - robay)

Related Research Articles

<span class="mw-page-title-main">Uniform 9-polytope</span>

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">5-demicube</span>

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.

<span class="mw-page-title-main">Gosset–Elte figures</span>

In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.

<span class="mw-page-title-main">Uniform 10-polytope</span>

In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.

<span class="mw-page-title-main">Rectified 5-simplexes</span>

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

2<sub> 31</sub> polytope

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

1<sub> 22</sub> polytope Uniform 6-polytope

In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).

1<sub> 32</sub> polytope

In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.

1 <sub>42</sub> polytope

In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

2<sub> 21</sub> polytope

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.

3<sub> 21</sub> polytope

In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure.

4<sub> 21</sub> polytope

In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

<span class="mw-page-title-main">Pentellated 6-simplexes</span>

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.

<span class="mw-page-title-main">Rectified 6-simplexes</span>

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.

<span class="mw-page-title-main">Rectified 7-simplexes</span> Convex uniform 7-polytope in seven-dimensional geometry

In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.

<span class="mw-page-title-main">Rectified 8-simplexes</span>

In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.

<span class="mw-page-title-main">Heptellated 8-simplexes</span>

In eight-dimensional geometry, a heptellated 8-simplex is a convex uniform 8-polytope, including 7th-order truncations (heptellation) from the regular 8-simplex.

In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb. Its facets are 5-demicubes and runcinated 5-demicubes.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds