6-orthoplex

Last updated
6-orthoplex
Hexacross
6-cube t5.svg
Orthogonal projection
inside Petrie polygon
TypeRegular 6-polytope
Family orthoplex
Schläfli symbols {3,3,3,3,4}
{3,3,3,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split5c.pngCDel nodes.png
5-faces64 {34} 5-simplex t0.svg
4-faces192 {33} 4-simplex t0.svg
Cells240 {3,3} 3-simplex t0.svg
Faces160 {3} 2-simplex t0.svg
Edges60
Vertices12
Vertex figure 5-orthoplex
Petrie polygon dodecagon
Coxeter groups B6, [4,34]
D6, [33,1,1]
Dual 6-cube
Properties convex, Hanner polytope

In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell 4-faces, and 64 5-faces.

Contents

It has two constructed forms, the first being regular with Schläfli symbol {34,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,31,1} or Coxeter symbol 311.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 6-hypercube, or hexeract.

Alternate names

As a configuration

This configuration matrix represents the 6-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. [1] [2]

Construction

There are three Coxeter groups associated with the 6-orthoplex, one regular, dual of the hexeract with the C6 or [4,3,3,3,3] Coxeter group, and a half symmetry with two copies of 5-simplex facets, alternating, with the D6 or [33,1,1] Coxeter group. A lowest symmetry construction is based on a dual of a 6-orthotope, called a 6-fusil.

Name Coxeter Schläfli Symmetry Order
Regular 6-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png{3,3,3,3,4}[4,3,3,3,3]46080
Quasiregular 6-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png{3,3,3,31,1}[3,3,3,31,1]23040
6-fusil CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png{3,3,3,4}+{}[4,3,3,3,3]7680
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png{3,3,4}+{4}[4,3,3,2,4]3072
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png2{3,4}[4,3,2,4,3]2304
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png{3,3,4}+2{}[4,3,3,2,2]1536
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.png{3,4}+{4}+{}[4,3,2,4,2]768
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png3{4}[4,2,4,2,4]512
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png{3,4}+3{}[4,3,2,2,2]384
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png2{4}+2{}[4,2,4,2,2]256
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png{4}+4{}[4,2,2,2,2]128
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png6{}[2,2,2,2,2]64

Cartesian coordinates

Cartesian coordinates for the vertices of a 6-orthoplex, centered at the origin are

(±1,0,0,0,0,0), (0,±1,0,0,0,0), (0,0,±1,0,0,0), (0,0,0,±1,0,0), (0,0,0,0,±1,0), (0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

Images

orthographic projections
Coxeter plane B6B5B4
Graph 6-cube t5.svg 6-cube t5 B5.svg 6-cube t5 B4.svg
Dihedral symmetry [12][10][8]
Coxeter planeB3B2
Graph 6-cube t5 B3.svg 6-cube t5 B2.svg
Dihedral symmetry[6][4]
Coxeter planeA5A3
Graph 6-cube t5 A5.svg 6-cube t5 A3.svg
Dihedral symmetry[6][4]

The 6-orthoplex can be projected down to 3-dimensions into the vertices of a regular icosahedron. [3]

2D3D
Icosahedron H3 projection.svg
Icosahedron
{3,5} = CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H3 Coxeter plane
6-cube t5 B5.svg
6-orthoplex
{3,3,3,31,1} = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
D6 Coxeter plane
Icosahedron frame.png
Icosahedron
Hexacross.png
6-orthoplex
This construction can be geometrically seen as the 12 vertices of the 6-orthoplex projected to 3 dimensions as the vertices of a regular icosahedron. This represents a geometric folding of the D6 to H3 Coxeter groups: Geometric folding Coxeter graph D6 H3.png : CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split5a.pngCDel nodes.png to CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png. On the left, seen by these 2D Coxeter plane orthogonal projections, the two overlapping central vertices define the third axis in this mapping. Every pair of vertices of the 6-orthoplex are connected, except opposite ones: 30 edges are shared with the icosahedron, while 30 more edges from the 6-orthoplex project to the interior of the icosahedron.

It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. (A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.)

3k1 dimensional figures
SpaceFiniteEuclideanHyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1A5D6 E7 =E7+=E7++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,3,1][30,3,1][[31,3,1]]
= [4,3,3,3,3]
[32,3,1][33,3,1][34,3,1]
Order 4872046,0802,903,040
Graph 5-simplex t0.svg 6-cube t5.svg Up2 3 21 t0 E7.svg --
Name 31,-1 310 311 321 331 341

This polytope is one of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes
6-cube t5.svg
β6
6-cube t4.svg
t1β6
6-cube t3.svg
t2β6
6-cube t2.svg
t2γ6
6-cube t1.svg
t1γ6
6-cube t0.svg
γ6
6-cube t45.svg
t0,1β6
6-cube t35.svg
t0,2β6
6-cube t34.svg
t1,2β6
6-cube t25.svg
t0,3β6
6-cube t24.svg
t1,3β6
6-cube t23.svg
t2,3γ6
6-cube t15.svg
t0,4β6
6-cube t14.svg
t1,4γ6
6-cube t13.svg
t1,3γ6
6-cube t12.svg
t1,2γ6
6-cube t05.svg
t0,5γ6
6-cube t04.svg
t0,4γ6
6-cube t03.svg
t0,3γ6
6-cube t02.svg
t0,2γ6
6-cube t01.svg
t0,1γ6
6-cube t345.svg
t0,1,2β6
6-cube t245.svg
t0,1,3β6
6-cube t235.svg
t0,2,3β6
6-cube t234.svg
t1,2,3β6
6-cube t145.svg
t0,1,4β6
6-cube t135.svg
t0,2,4β6
6-cube t134.svg
t1,2,4β6
6-cube t125.svg
t0,3,4β6
6-cube t124.svg
t1,2,4γ6
6-cube t123.svg
t1,2,3γ6
6-cube t045.svg
t0,1,5β6
6-cube t035.svg
t0,2,5β6
6-cube t034.svg
t0,3,4γ6
6-cube t025.svg
t0,2,5γ6
6-cube t024.svg
t0,2,4γ6
6-cube t023.svg
t0,2,3γ6
6-cube t015.svg
t0,1,5γ6
6-cube t014.svg
t0,1,4γ6
6-cube t013.svg
t0,1,3γ6
6-cube t012.svg
t0,1,2γ6
6-cube t2345.svg
t0,1,2,3β6
6-cube t1345.svg
t0,1,2,4β6
6-cube t1245.svg
t0,1,3,4β6
6-cube t1235.svg
t0,2,3,4β6
6-cube t1234.svg
t1,2,3,4γ6
6-cube t0345.svg
t0,1,2,5β6
6-cube t0245.svg
t0,1,3,5β6
6-cube t0235.svg
t0,2,3,5γ6
6-cube t0234.svg
t0,2,3,4γ6
6-cube t0145.svg
t0,1,4,5γ6
6-cube t0135.svg
t0,1,3,5γ6
6-cube t0134.svg
t0,1,3,4γ6
6-cube t0125.svg
t0,1,2,5γ6
6-cube t0124.svg
t0,1,2,4γ6
6-cube t0123.svg
t0,1,2,3γ6
6-cube t12345.svg
t0,1,2,3,4β6
6-cube t02345.svg
t0,1,2,3,5β6
6-cube t01345.svg
t0,1,2,4,5β6
6-cube t01245.svg
t0,1,2,4,5γ6
6-cube t01235.svg
t0,1,2,3,5γ6
6-cube t01234.svg
t0,1,2,3,4γ6
6-cube t012345.svg
t0,1,2,3,4,5γ6

Related Research Articles

<span class="mw-page-title-main">5-polytope</span> 5-dimensional geometric object

In geometry, a five-dimensional polytope is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell.

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

<span class="mw-page-title-main">5-orthoplex</span>

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(1/5), or approximately 78.46°.

<span class="mw-page-title-main">6-cube</span> 6-dimensional hypercube

In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.

<span class="mw-page-title-main">6-demicube</span>

In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

<span class="mw-page-title-main">7-cube</span> 7-dimensional hypercube

In geometry, a 7-cube is a seven-dimensional hypercube with 128 vertices, 448 edges, 672 square faces, 560 cubic cells, 280 tesseract 4-faces, 84 penteract 5-faces, and 14 hexeract 6-faces.

<span class="mw-page-title-main">8-cube</span> 8-dimensional hypercube

In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.

<span class="mw-page-title-main">9-cube</span> 9-dimensional hypercube

In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

<span class="mw-page-title-main">7-orthoplex</span>

In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells 4-faces, 448 5-faces, and 128 6-faces.

In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.

<span class="mw-page-title-main">8-orthoplex</span>

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

<span class="mw-page-title-main">9-orthoplex</span>

In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.

<span class="mw-page-title-main">10-cube</span> 10-dimensional hypercube

In geometry, a 10-cube is a ten-dimensional hypercube. It has 1024 vertices, 5120 edges, 11520 square faces, 15360 cubic cells, 13440 tesseract 4-faces, 8064 5-cube 5-faces, 3360 6-cube 6-faces, 960 7-cube 7-faces, 180 8-cube 8-faces, and 20 9-cube 9-faces.

<span class="mw-page-title-main">10-orthoplex</span>

In geometry, a 10-orthoplex or 10-cross polytope, is a regular 10-polytope with 20 vertices, 180 edges, 960 triangle faces, 3360 octahedron cells, 8064 5-cells 4-faces, 13440 5-faces, 15360 6-faces, 11520 7-faces, 5120 8-faces, and 1024 9-faces.

<span class="mw-page-title-main">Rectified 5-simplexes</span>

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

<span class="mw-page-title-main">Rectified 5-orthoplexes</span>

In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex.

In seven-dimensional geometry, a rectified 7-orthoplex is a convex uniform 7-polytope, being a rectification of the regular 7-orthoplex.

<span class="mw-page-title-main">Rectified 6-orthoplexes</span>

In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex.

<span class="mw-page-title-main">6-polytope</span>

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

References

Specific
  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  3. Quasicrystals and Geometry , Marjorie Senechal, 1996, Cambridge University Press, p64. 2.7.1 The I6 crystal
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds