This article needs additional citations for verification .(April 2010) |
Lie groups and Lie algebras |
---|
In mathematics, a simple Lie group is a connected non-abelian Lie group G which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces.
Together with the commutative Lie group of the real numbers, , and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the so-called "special linear group" SL(n, ) of n by n matrices with determinant equal to 1 is simple for all odd n > 1, when it is isomorphic to the projective special linear group.
The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final classification is often referred to as Killing-Cartan classification.
Unfortunately, there is no universally accepted definition of a simple Lie group. In particular, it is not always defined as a Lie group that is simple as an abstract group. Authors differ on whether a simple Lie group has to be connected, or on whether it is allowed to have a non-trivial center, or on whether is a simple Lie group.
The most common definition is that a Lie group is simple if it is connected, non-abelian, and every closed connected normal subgroup is either the identity or the whole group. In particular, simple groups are allowed to have a non-trivial center, but is not simple.
In this article the connected simple Lie groups with trivial center are listed. Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover, whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the center.
An equivalent definition of a simple Lie group follows from the Lie correspondence: A connected Lie group is simple if its Lie algebra is simple. An important technical point is that a simple Lie group may contain discrete normal subgroups. For this reason, the definition of a simple Lie group is not equivalent to the definition of a Lie group that is simple as an abstract group.
Simple Lie groups include many classical Lie groups, which provide a group-theoretic underpinning for spherical geometry, projective geometry and related geometries in the sense of Felix Klein's Erlangen program. It emerged in the course of classification of simple Lie groups that there exist also several exceptional possibilities not corresponding to any familiar geometry. These exceptional groups account for many special examples and configurations in other branches of mathematics, as well as contemporary theoretical physics.
As a counterexample, the general linear group is neither simple, nor semisimple. This is because multiples of the identity form a nontrivial normal subgroup, thus evading the definition. Equivalently, the corresponding Lie algebra has a degenerate Killing form, because multiples of the identity map to the zero element of the algebra. Thus, the corresponding Lie algebra is also neither simple nor semisimple. Another counter-example are the special orthogonal groups in even dimension. These have the matrix in the center, and this element is path-connected to the identity element, and so these groups evade the definition. Both of these are reductive groups.
The Lie algebra of a simple Lie group is a simple Lie algebra. This is a one-to-one correspondence between connected simple Lie groups with trivial center and simple Lie algebras of dimension greater than 1. (Authors differ on whether the one-dimensional Lie algebra should be counted as simple.)
Over the complex numbers the semisimple Lie algebras are classified by their Dynkin diagrams, of types "ABCDEFG". If L is a real simple Lie algebra, its complexification is a simple complex Lie algebra, unless L is already the complexification of a Lie algebra, in which case the complexification of L is a product of two copies of L. This reduces the problem of classifying the real simple Lie algebras to that of finding all the real forms of each complex simple Lie algebra (i.e., real Lie algebras whose complexification is the given complex Lie algebra). There are always at least 2 such forms: a split form and a compact form, and there are usually a few others. The different real forms correspond to the classes of automorphisms of order at most 2 of the complex Lie algebra.
Symmetric spaces are classified as follows.
First, the universal cover of a symmetric space is still symmetric, so we can reduce to the case of simply connected symmetric spaces. (For example, the universal cover of a real projective plane is a sphere.)
Second, the product of symmetric spaces is symmetric, so we may as well just classify the irreducible simply connected ones (where irreducible means they cannot be written as a product of smaller symmetric spaces).
The irreducible simply connected symmetric spaces are the real line, and exactly two symmetric spaces corresponding to each non-compact simple Lie group G, one compact and one non-compact. The non-compact one is a cover of the quotient of G by a maximal compact subgroup H, and the compact one is a cover of the quotient of the compact form of G by the same subgroup H. This duality between compact and non-compact symmetric spaces is a generalization of the well known duality between spherical and hyperbolic geometry.
A symmetric space with a compatible complex structure is called Hermitian. The compact simply connected irreducible Hermitian symmetric spaces fall into 4 infinite families with 2 exceptional ones left over, and each has a non-compact dual. In addition the complex plane is also a Hermitian symmetric space; this gives the complete list of irreducible Hermitian symmetric spaces.
The four families are the types A III, B I and D I for p = 2, D III, and C I, and the two exceptional ones are types E III and E VII of complex dimensions 16 and 27.
stand for the real numbers, complex numbers, quaternions, and octonions.
In the symbols such as E6−26 for the exceptional groups, the exponent −26 is the signature of an invariant symmetric bilinear form that is negative definite on the maximal compact subgroup. It is equal to the dimension of the group minus twice the dimension of a maximal compact subgroup.
The fundamental group listed in the table below is the fundamental group of the simple group with trivial center. Other simple groups with the same Lie algebra correspond to subgroups of this fundamental group (modulo the action of the outer automorphism group).
Simple Lie groups are fully classified. The classification is usually stated in several steps, namely:
One can show that the fundamental group of any Lie group is a discrete commutative group. Given a (nontrivial) subgroup of the fundamental group of some Lie group , one can use the theory of covering spaces to construct a new group with in its center. Now any (real or complex) Lie group can be obtained by applying this construction to centerless Lie groups. Note that real Lie groups obtained this way might not be real forms of any complex group. A very important example of such a real group is the metaplectic group, which appears in infinite-dimensional representation theory and physics. When one takes for the full fundamental group, the resulting Lie group is the universal cover of the centerless Lie group , and is simply connected. In particular, every (real or complex) Lie algebra also corresponds to a unique connected and simply connected Lie group with that Lie algebra, called the "simply connected Lie group" associated to
Every simple complex Lie algebra has a unique real form whose corresponding centerless Lie group is compact. It turns out that the simply connected Lie group in these cases is also compact. Compact Lie groups have a particularly tractable representation theory because of the Peter–Weyl theorem. Just like simple complex Lie algebras, centerless compact Lie groups are classified by Dynkin diagrams (first classified by Wilhelm Killing and Élie Cartan).
For the infinite (A, B, C, D) series of Dynkin diagrams, a connected compact Lie group associated to each Dynkin diagram can be explicitly described as a matrix group, with the corresponding centerless compact Lie group described as the quotient by a subgroup of scalar matrices. For those of type A and C we can find explicit matrix representations of the corresponding simply connected Lie group as matrix groups.
Ar has as its associated simply connected compact group the special unitary group, SU(r + 1) and as its associated centerless compact group the projective unitary group PU(r + 1).
Br has as its associated centerless compact groups the odd special orthogonal groups, SO(2r + 1). This group is not simply connected however: its universal (double) cover is the spin group.
Cr has as its associated simply connected group the group of unitary symplectic matrices, Sp(r) and as its associated centerless group the Lie group PSp(r) = Sp(r)/{I, −I} of projective unitary symplectic matrices. The symplectic groups have a double-cover by the metaplectic group.
Dr has as its associated compact group the even special orthogonal groups, SO(2r) and as its associated centerless compact group the projective special orthogonal group PSO(2r) = SO(2r)/{I, −I}. As with the B series, SO(2r) is not simply connected; its universal cover is again the spin group, but the latter again has a center (cf. its article).
The diagram D2 is two isolated nodes, the same as A1∪ A1, and this coincidence corresponds to the covering map homomorphism from SU(2) × SU(2) to SO(4) given by quaternion multiplication; see quaternions and spatial rotation. Thus SO(4) is not a simple group. Also, the diagram D3 is the same as A3, corresponding to a covering map homomorphism from SU(4) to SO(6).
In addition to the four families Ai, Bi, Ci, and Di above, there are five so-called exceptional Dynkin diagrams G2, F4, E6, E7, and E8; these exceptional Dynkin diagrams also have associated simply connected and centerless compact groups. However, the groups associated to the exceptional families are more difficult to describe than those associated to the infinite families, largely because their descriptions make use of exceptional objects. For example, the group associated to G2 is the automorphism group of the octonions, and the group associated to F4 is the automorphism group of a certain Albert algebra.
See also E7+1⁄2.
Dimension | Outer automorphism group | Dimension of symmetric space | Symmetric space | Remarks | |
---|---|---|---|---|---|
(Abelian) | 1 | 1 | † |
Dimension | Real rank | Fundamental group | Outer automorphism group | Other names | Remarks | |
---|---|---|---|---|---|---|
An (n ≥ 1) compact | n(n + 2) | 0 | Cyclic, order n + 1 | 1 if n = 1, 2 if n > 1. | projective special unitary group PSU(n + 1) | A1 is the same as B1 and C1 |
Bn (n ≥ 2) compact | n(2n + 1) | 0 | 2 | 1 | special orthogonal group SO2n+1(R) | B1 is the same as A1 and C1. B2 is the same as C2. |
Cn (n ≥ 3) compact | n(2n + 1) | 0 | 2 | 1 | projective compact symplectic group PSp(n), PSp(2n), PUSp(n), PUSp(2n) | Hermitian. Complex structures of Hn. Copies of complex projective space in quaternionic projective space. |
Dn (n ≥ 4) compact | n(2n− 1) | 0 | Order 4 (cyclic when n is odd). | 2 if n > 4, S3 if n = 4 | projective special orthogonal group PSO2n(R) | D3 is the same as A3, D2 is the same as A12, and D1 is abelian. |
E6−78 compact | 78 | 0 | 3 | 2 | ||
E7−133 compact | 133 | 0 | 2 | 1 | ||
E8−248 compact | 248 | 0 | 1 | 1 | ||
F4−52 compact | 52 | 0 | 1 | 1 | ||
G2−14 compact | 14 | 0 | 1 | 1 | This is the automorphism group of the Cayley algebra. |
Dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | Remarks | |
---|---|---|---|---|---|---|---|---|---|---|
An I (n ≥ 1) split | n(n + 2) | n | Dn/2 or B(n−1)/2 | Infinite cyclic if n = 1 2 if n ≥ 2 | 1 if n = 1 2 if n ≥ 2. | projective special linear group PSLn+1(R) | n(n + 3)/2 | Real structures on Cn+1 or set of RPn in CPn. Hermitian if n = 1, in which case it is the 2-sphere. | Euclidean structures on Rn+1. Hermitian if n = 1, when it is the upper half plane or unit complex disc. | |
Bn I (n ≥ 2) split | n(2n + 1) | n | SO(n)SO(n+1) | Non-cyclic, order 4 | 1 | identity component of special orthogonal group SO(n,n+1) | n(n + 1) | B1 is the same as A1. | ||
Cn I (n ≥ 3) split | n(2n + 1) | n | An−1S1 | Infinite cyclic | 1 | projective symplectic group PSp2n(R), PSp(2n,R), PSp(2n), PSp(n,R), PSp(n) | n(n + 1) | Hermitian. Complex structures of Hn. Copies of complex projective space in quaternionic projective space. | Hermitian. Complex structures on R2n compatible with a symplectic form. Set of complex hyperbolic spaces in quaternionic hyperbolic space. Siegel upper half space. | C2 is the same as B2, and C1 is the same as B1 and A1. |
Dn I (n ≥ 4) split | n(2n - 1) | n | SO(n)SO(n) | Order 4 if n odd, 8 if n even | 2 if n > 4, S3 if n = 4 | identity component of projective special orthogonal group PSO(n,n) | n2 | D3 is the same as A3, D2 is the same as A12, and D1 is abelian. | ||
E66 I split | 78 | 6 | C4 | Order 2 | Order 2 | E I | 42 | |||
E77 V split | 133 | 7 | A7 | Cyclic, order 4 | Order 2 | 70 | ||||
E88 VIII split | 248 | 8 | D8 | 2 | 1 | E VIII | 128 | @ E8 | ||
F44 I split | 52 | 4 | C3 × A1 | Order 2 | 1 | F I | 28 | Quaternionic projective planes in Cayley projective plane. | Hyperbolic quaternionic projective planes in hyperbolic Cayley projective plane. | |
G22 I split | 14 | 2 | A1 × A1 | Order 2 | 1 | G I | 8 | Quaternionic subalgebras of the Cayley algebra. Quaternion-Kähler. | Non-division quaternionic subalgebras of the non-division Cayley algebra. Quaternion-Kähler. |
Real dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | |
---|---|---|---|---|---|---|---|---|---|
An (n ≥ 1) complex | 2n(n + 2) | n | An | Cyclic, order n + 1 | 2 if n = 1, 4 (noncyclic) if n ≥ 2. | projective complex special linear group PSLn+1(C) | n(n + 2) | Compact group An | Hermitian forms on Cn+1 with fixed volume. |
Bn (n ≥ 2) complex | 2n(2n + 1) | n | Bn | 2 | Order 2 (complex conjugation) | complex special orthogonal group SO2n+1(C) | n(2n + 1) | Compact group Bn | |
Cn (n ≥ 3) complex | 2n(2n + 1) | n | Cn | 2 | Order 2 (complex conjugation) | projective complex symplectic group PSp2n(C) | n(2n + 1) | Compact group Cn | |
Dn (n ≥ 4) complex | 2n(2n− 1) | n | Dn | Order 4 (cyclic when n is odd) | Noncyclic of order 4 for n > 4, or the product of a group of order 2 and the symmetric group S3 when n = 4. | projective complex special orthogonal group PSO2n(C) | n(2n− 1) | Compact group Dn | |
E6 complex | 156 | 6 | E6 | 3 | Order 4 (non-cyclic) | 78 | Compact group E6 | ||
E7 complex | 266 | 7 | E7 | 2 | Order 2 (complex conjugation) | 133 | Compact group E7 | ||
E8 complex | 496 | 8 | E8 | 1 | Order 2 (complex conjugation) | 248 | Compact group E8 | ||
F4 complex | 104 | 4 | F4 | 1 | 2 | 52 | Compact group F4 | ||
G2 complex | 28 | 2 | G2 | 1 | Order 2 (complex conjugation) | 14 | Compact group G2 |
Dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | Remarks | |
---|---|---|---|---|---|---|---|---|---|---|
A2n−1 II (n ≥ 2) | (2n− 1)(2n + 1) | n− 1 | Cn | Order 2 | SLn(H), SU∗(2n) | (n− 1)(2n + 1) | Quaternionic structures on C2n compatible with the Hermitian structure | Copies of quaternionic hyperbolic space (of dimension n− 1) in complex hyperbolic space (of dimension 2n− 1). | ||
An III (n ≥ 1) p + q = n + 1 (1 ≤ p ≤ q) | n(n + 2) | p | Ap−1Aq−1S1 | SU(p,q), A III | 2pq | Hermitian. Grassmannian of p subspaces of Cp+q. If p or q is 2; quaternion-Kähler | Hermitian. Grassmannian of maximal positive definite subspaces of Cp,q. If p or q is 2, quaternion-Kähler | If p=q=1, split If |p−q| ≤ 1, quasi-split | ||
Bn I (n > 1) p+q = 2n+1 | n(2n + 1) | min(p,q) | SO(p)SO(q) | SO(p,q) | pq | Grassmannian of Rps in Rp+q. If p or q is 1, Projective space If p or q is 2; Hermitian If p or q is 4, quaternion-Kähler | Grassmannian of positive definite Rps in Rp,q. If p or q is 1, Hyperbolic space If p or q is 2, Hermitian If p or q is 4, quaternion-Kähler | If |p−q| ≤ 1, split. | ||
Cn II (n > 2) n = p+q (1 ≤ p ≤ q) | n(2n + 1) | min(p,q) | CpCq | Order 2 | 1 if p ≠ q, 2 if p = q. | Sp2p,2q(R) | 4pq | Grassmannian of Hps in Hp+q. If p or q is 1, quaternionic projective space in which case it is quaternion-Kähler. | Hps in Hp,q. If p or q is 1, quaternionic hyperbolic space in which case it is quaternion-Kähler. | |
Dn I (n ≥ 4) p+q = 2n | n(2n− 1) | min(p,q) | SO(p)SO(q) | If p and q ≥ 3, order 8. | SO(p,q) | pq | Grassmannian of Rps in Rp+q. If p or q is 1, Projective space If p or q is 2 ; Hermitian If p or q is 4, quaternion-Kähler | Grassmannian of positive definite Rps in Rp,q. If p or q is 1, Hyperbolic Space If p or q is 2, Hermitian If p or q is 4, quaternion-Kähler | If p = q, split If |p−q| ≤ 2, quasi-split | |
Dn III (n ≥ 4) | n(2n− 1) | ⌊n/2⌋ | An−1R1 | Infinite cyclic | Order 2 | SO*(2n) | n(n− 1) | Hermitian. Complex structures on R2n compatible with the Euclidean structure. | Hermitian. Quaternionic quadratic forms on R2n. | |
E62 II (quasi-split) | 78 | 4 | A5A1 | Cyclic, order 6 | Order 2 | E II | 40 | Quaternion-Kähler. | Quaternion-Kähler. | Quasi-split but not split. |
E6−14 III | 78 | 2 | D5S1 | Infinite cyclic | Trivial | E III | 32 | Hermitian. Rosenfeld elliptic projective plane over the complexified Cayley numbers. | Hermitian. Rosenfeld hyperbolic projective plane over the complexified Cayley numbers. | |
E6−26 IV | 78 | 2 | F4 | Trivial | Order 2 | E IV | 26 | Set of Cayley projective planes in the projective plane over the complexified Cayley numbers. | Set of Cayley hyperbolic planes in the hyperbolic plane over the complexified Cayley numbers. | |
E7−5 VI | 133 | 4 | D6A1 | Non-cyclic, order 4 | Trivial | E VI | 64 | Quaternion-Kähler. | Quaternion-Kähler. | |
E7−25 VII | 133 | 3 | E6S1 | Infinite cyclic | Order 2 | E VII | 54 | Hermitian. | Hermitian. | |
E8−24 IX | 248 | 4 | E7 × A1 | Order 2 | 1 | E IX | 112 | Quaternion-Kähler. | Quaternion-Kähler. | |
F4−20 II | 52 | 1 | B4 (Spin9(R)) | Order 2 | 1 | F II | 16 | Cayley projective plane. Quaternion-Kähler. | Hyperbolic Cayley projective plane. Quaternion-Kähler. |
The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.
Dim | Groups | Symmetric space | Compact dual | Rank | Dim | |
---|---|---|---|---|---|---|
1 | ℝ, S1 = U(1) = SO2(ℝ) = Spin(2) | Abelian | Real line | 0 | 1 | |
3 | S3 = Sp(1) = SU(2)=Spin(3), SO3(ℝ) = PSU(2) | Compact | ||||
3 | SL2(ℝ) = Sp2(ℝ), SO2,1(ℝ) | Split, Hermitian, hyperbolic | Hyperbolic plane | Sphere S2 | 1 | 2 |
6 | SL2(ℂ) = Sp2(ℂ), SO3,1(ℝ), SO3(ℂ) | Complex | Hyperbolic space | Sphere S3 | 1 | 3 |
8 | SL3(ℝ) | Split | Euclidean structures on | Real structures on | 2 | 5 |
8 | SU(3) | Compact | ||||
8 | SU(1,2) | Hermitian, quasi-split, quaternionic | Complex hyperbolic plane | Complex projective plane | 1 | 4 |
10 | Sp(2) = Spin(5), SO5(ℝ) | Compact | ||||
10 | SO4,1(ℝ), Sp2,2(ℝ) | Hyperbolic, quaternionic | Hyperbolic space | Sphere S4 | 1 | 4 |
10 | SO3,2(ℝ), Sp4(ℝ) | Split, Hermitian | Siegel upper half space | Complex structures on | 2 | 6 |
14 | G2 | Compact | ||||
14 | G2 | Split, quaternionic | Non-division quaternionic subalgebras of non-division octonions | Quaternionic subalgebras of octonions | 2 | 8 |
15 | SU(4) = Spin(6), SO6(ℝ) | Compact | ||||
15 | SL4(ℝ), SO3,3(ℝ) | Split | ℝ3 in ℝ3,3 | Grassmannian G(3,3) | 3 | 9 |
15 | SU(3,1) | Hermitian | Complex hyperbolic space | Complex projective space | 1 | 6 |
15 | SU(2,2), SO4,2(ℝ) | Hermitian, quasi-split, quaternionic | ℝ2 in ℝ2,4 | Grassmannian G(2,4) | 2 | 8 |
15 | SL2(ℍ), SO5,1(ℝ) | Hyperbolic | Hyperbolic space | Sphere S5 | 1 | 5 |
16 | SL3(ℂ) | Complex | SU(3) | 2 | 8 | |
20 | SO5(ℂ), Sp4(ℂ) | Complex | Spin5(ℝ) | 2 | 10 | |
21 | SO7(ℝ) | Compact | ||||
21 | SO6,1(ℝ) | Hyperbolic | Hyperbolic space | Sphere S6 | ||
21 | SO5,2(ℝ) | Hermitian | ||||
21 | SO4,3(ℝ) | Split, quaternionic | ||||
21 | Sp(3) | Compact | ||||
21 | Sp6(ℝ) | Split, hermitian | ||||
21 | Sp4,2(ℝ) | Quaternionic | ||||
24 | SU(5) | Compact | ||||
24 | SL5(ℝ) | Split | ||||
24 | SU4,1 | Hermitian | ||||
24 | SU3,2 | Hermitian, quaternionic | ||||
28 | SO8(ℝ) | Compact | ||||
28 | SO7,1(ℝ) | Hyperbolic | Hyperbolic space | Sphere S7 | ||
28 | SO6,2(ℝ) | Hermitian | ||||
28 | SO5,3(ℝ) | Quasi-split | ||||
28 | SO4,4(ℝ) | Split, quaternionic | ||||
28 | SO∗8(ℝ) | Hermitian | ||||
28 | G2(ℂ) | Complex | ||||
30 | SL4(ℂ) | Complex |
A simply laced group is a Lie group whose Dynkin diagram only contain simple links, and therefore all the nonzero roots of the corresponding Lie algebra have the same length. The A, D and E series groups are all simply laced, but no group of type B, C, F, or G is simply laced.
In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.
In mathematics, G2 is three simple Lie groups (a complex form, a compact real form and a split real form), their Lie algebras as well as some algebraic groups. They are the smallest of the five exceptional simple Lie groups. G2 has rank 2 and dimension 14. It has two fundamental representations, with dimension 7 and 14.
In mathematics, F4 is a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups. F4 has rank 4 and dimension 52. The compact form is simply connected and its outer automorphism group is the trivial group. Its fundamental representation is 26-dimensional.
In mathematics, E6 is the name of some closely related Lie groups, linear algebraic groups or their Lie algebras , all of which have dimension 78; the same notation E6 is used for the corresponding root lattice, which has rank 6. The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras (see Élie Cartan § Work). This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, and G2. The E6 algebra is thus one of the five exceptional cases.
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .
In mathematics the spin group, denoted Spin(n), is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2)
In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.
In mathematics, E7 is the name of several closely related Lie groups, linear algebraic groups or their Lie algebras e7, all of which have dimension 133; the same notation E7 is used for the corresponding root lattice, which has rank 7. The designation E7 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, and G2. The E7 algebra is thus one of the five exceptional cases.
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.
In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.
This is a glossary of representation theory in mathematics.
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan.
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.