Representation theory of the Galilean group

Last updated

In nonrelativistic quantum mechanics, an account can be given of the existence of mass and spin (normally explained in Wigner's classification of relativistic mechanics) in terms of the representation theory of the Galilean group , which is the spacetime symmetry group of nonrelativistic quantum mechanics.

Contents

Background

In 3 + 1 dimensions, this is the subgroup of the affine group on (t, x, y, z), whose linear part leaves invariant both the metric (gμν = diag(1, 0, 0, 0)) and the (independent) dual metric (gμν = diag(0, 1, 1, 1)). A similar definition applies for n + 1 dimensions.

We are interested in projective representations of this group, which are equivalent to unitary representations of the nontrivial central extension of the universal covering group of the Galilean group by the one-dimensional Lie group R, cf. the article Galilean group for the central extension of its Lie algebra. The method of induced representations will be used to survey these.

Lie algebra

We focus on the (centrally extended, Bargmann) Lie algebra here, because it is simpler to analyze and we can always extend the results to the full Lie group through the Frobenius theorem.

E is the generator of time translations (Hamiltonian), Pi is the generator of translations (momentum operator), Ci is the generator of Galilean boosts, and Lij stands for a generator of rotations (angular momentum operator).

Casimir invariants

The central charge M is a Casimir invariant.

The mass-shell invariant

is an additional Casimir invariant.

In 3 + 1 dimensions, a third Casimir invariant is W2, where

somewhat analogous to the Pauli–Lubanski pseudovector of relativistic mechanics.

More generally, in n + 1 dimensions, invariants will be a function of

and

as well as of the above mass-shell invariant and central charge.

Schur's lemma

Using Schur's lemma, in an irreducible unitary representation, all these Casimir invariants are multiples of the identity. Call these coefficients m and mE0 and (in the case of 3 + 1 dimensions) w, respectively. Recalling that we are considering unitary representations here, we see that these eigenvalues have to be real numbers.

Thus, m > 0, m = 0 and m < 0. (The last case is similar to the first.) In 3 + 1 dimensions, when In m > 0, we can write, w = ms for the third invariant, where s represents the spin, or intrinsic angular momentum. More generally, in n + 1 dimensions, the generators L and C will be related, respectively, to the total angular momentum and center-of-mass moment by

From a purely representation-theoretic point of view, one would have to study all of the representations; but, here, we are only interested in applications to quantum mechanics. There, E represents the energy, which has to be bounded below, if thermodynamic stability is required. Consider first the case where m is nonzero.

Considering the (E, P) space with the constraint we see that the Galilean boosts act transitively on this hypersurface. In fact, treating the energy E as the Hamiltonian, differentiating with respect to P, and applying Hamilton's equations, we obtain the mass-velocity relation mv = P.

The hypersurface is parametrized by this velocity In v. Consider the stabilizer of a point on the orbit, (E0, 0), where the velocity is 0. Because of transitivity, we know the unitary irrep contains a nontrivial linear subspace with these energy-momentum eigenvalues. (This subspace only exists in a rigged Hilbert space, because the momentum spectrum is continuous.)

The little group

The subspace is spanned by E, P, M and Lij. We already know how the subspace of the irrep transforms under all operators but the angular momentum. Note that the rotation subgroup is Spin(3). We have to look at its double cover, because we are considering projective representations. This is called the little group, a name given by Eugene Wigner. His method of induced representations specifies that the irrep is given by the direct sum of all the fibers in a vector bundle over the mE = mE0 + P2/2 hypersurface, whose fibers are a unitary irrep of Spin(3).

Spin(3) is none other than SU(2). (See representation theory of SU(2), where it is shown that the unitary irreps of SU(2) are labeled by s, a non-negative integer multiple of one half. This is called spin, for historical reasons.)

is nonpositive. Suppose it is zero. Here, it is also the boosts as well as the rotations that constitute the little group. Any unitary irrep of this little group also gives rise to a projective irrep of the Galilean group. As far as we can tell, only the case which transforms trivially under the little group has any physical interpretation, and it corresponds to the no-particle state, the vacuum.

The case where the invariant is negative requires additional comment. This corresponds to the representation class for m = 0 and non-zero P. Extending the bradyon, luxon, tachyon classification from the representation theory of the Poincaré group to an analogous classification, here, one may term these states as synchrons. They represent an instantaneous transfer of non-zero momentum across a (possibly large) distance. Associated with them, by above, is a "time" operator

which may be identified with the time of transfer. These states are naturally interpreted as the carriers of instantaneous action-at-a-distance forces.

N.B. In the 3 + 1-dimensional Galilei group, the boost generator may be decomposed into

with W playing a role analogous to helicity.

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Poincaré group</span> Group of flat spacetime symmetries

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group. Without the translations in space and time the group is the homogeneous Galilean group. The Galilean group is the group of motions of Galilean relativity acting on the four dimensions of space and time, forming the Galilean geometry. This is the passive transformation point of view. In special relativity the homogenous and inhomogenous Galilean transformations are, respectively, replaced by the Lorentz transformations and Poincaré transformations; conversely, the group contraction in the classical limit c → ∞ of Poincaré transformations yields Galilean transformations.

In mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group which have either finite or zero mass eigenvalues. It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

<span class="mw-page-title-main">Irreducible representation</span> Type of group and algebra representation

In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of .

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

<span class="mw-page-title-main">Light front quantization</span> Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

<span class="mw-page-title-main">Pauli–Lubanski pseudovector</span> Operator in quantum field theory

In physics, the Pauli–Lubanski pseudovector is an operator defined from the momentum and angular momentum, used in the quantum-relativistic description of angular momentum. It is named after Wolfgang Pauli and Józef Lubański,

The Schrödinger group is the symmetry group of the free particle Schrödinger equation. Mathematically, the group SL(2,R) acts on the Heisenberg group by outer automorphisms, and the Schrödinger group is the corresponding semidirect product.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.

The periodic table of topological invariants is an application of topology to physics. It indicates the group of topological invariant for topological insulators and topological superconductors in each dimension and in each discrete symmetry class.

The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.

References